K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

8 tháng 1 2020

1.

\(\frac{2x+3}{4}-\frac{5x+3}{6}=\frac{3-4x}{12}\)

\(MC:12\)

Quy đồng :

\(\Rightarrow\frac{3.\left(2x+3\right)}{12}-\left(\frac{2.\left(5x+3\right)}{12}\right)=\frac{3x-4}{12}\)

\(\frac{6x+9}{12}-\left(\frac{10x+6}{12}\right)=\frac{3x-4}{12}\)

\(\Leftrightarrow6x+9-\left(10x+6\right)=3x-4\)

\(\Leftrightarrow6x+9-3x=-4-9+16\)

\(\Leftrightarrow-7x=3\)

\(\Leftrightarrow x=\frac{-3}{7}\)

2.\(\frac{3.\left(2x+1\right)}{4}-1=\frac{15x-1}{10}\)

\(MC:20\)

Quy đồng :

\(\frac{15.\left(2x+1\right)}{20}-\frac{20}{20}=\frac{2.\left(15x-1\right)}{20}\)

\(\Leftrightarrow15\left(2x+1\right)-20=2\left(15x-1\right)\)

\(\Leftrightarrow30x+15-20=15x-2\)

\(\Leftrightarrow15x=3\)

\(\Leftrightarrow x=\frac{3}{15}=\frac{1}{5}\)

a) Ta có: \(\left(x-3\right)\left(x^2+3x+9\right)\)

\(=\left(x-3\right)\left(x^2+x\cdot3+3^2\right)\)

\(=x^3-3^3=x^3-27\)

b) Ta có: \(\left(x-2\right)\left(x^2+2x+4\right)\)

\(=\left(x-2\right)\left(x^2+x\cdot2+2^2\right)\)

\(=x^3-2^3=x^3-8\)

c) Ta có: \(\left(x+4\right)\left(x^2-4x+16\right)\)

\(=\left(x+4\right)\left(x^2-x\cdot4+4^2\right)\)

\(=x^3+4^3=x^3+64\)

d) Ta có: \(\left(x-3y\right)\left(x^2+3xy+9y^2\right)\)

\(=\left(x-3y\right)\left[x^2+x\cdot3y+\left(3y\right)^2\right]\)

\(=x^3-\left(3y\right)^3=x^3-27y^3\)

e) Ta có: \(\left(x^2-\frac{1}{3}\right)\left(x^4+\frac{1}{3}x^2+\frac{1}{9}\right)\)

\(=\left(x^2-\frac{1}{3}\right)\left[\left(x^2\right)^2+x^2\cdot\frac{1}{3}+\left(\frac{1}{3}\right)^2\right]\)

\(=\left(x^2\right)^3-\left(\frac{1}{3}\right)^3\)

\(=x^6-\frac{1}{27}\)

f) Ta có: \(\left(\frac{1}{3}x+2y\right)\left(\frac{1}{9}x^2-\frac{2}{3}xy+4y^2\right)\)

\(=\left(\frac{1}{3}x+2y\right)\left[\left(\frac{1}{3}x\right)^2-\frac{1}{3}x\cdot2y+\left(2y\right)^2\right]\)

\(=\left(\frac{1}{3}x\right)^3+\left(2y\right)^3\)

\(=\frac{1}{27}x^3+8y^3\)