Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(B=3^2+3^3+...+3^{99}\)
\(3B=3^3+3^4+...+3^{100}\)
\(3B-B=\left(3^3+3^4+...+3^{100}\right)-\left(3^2+3^3+...+3^{99}\right)\)
\(2B=3^{100}-3^2\)
\(B=\frac{3^{100}-9}{2}\)
\(2B+9=3^{2n+4}\)
\(\Leftrightarrow3^{2n+4}=3^{100}\)
\(\Leftrightarrow2n+4=100\)
\(\Leftrightarrow n=48\).
A:7 (dư 5)
A:13 (dư 4)
=) A + 9 chia hết cho 7 và 13
7 và 13 đều là số nguyên tố => A + 9 chia hết cho 7 x 13 = 91
=> A chia cho 91 dư 91 - 9 = 82
Vậy số tự nhiên đó chia cho 7 dư 5, chia cho 13 dư 4. Nếu đem số đó chia cho 91 dư 82
Khoảng cách là 3 đơn vị
Số thứ 23 là : 3 x (23 - 1) + 4 = 70
\(S=4+7+10+13+...+145+148\)
A.
Số số hạng thứ 23 của S:
\(\frac{x-4}{3}+1=23\)
\(\Rightarrow\frac{x-4}{3}=22\)
\(\Rightarrow x-4=22.3\)
\(\Rightarrow x-4=66\)
\(\Rightarrow x=4+66\)
\(\Rightarrow x=70\)
B.
Có số hạng của dãy số S: \(\frac{148-4}{3}+1=49\)số hạng
Tổng dãy số S: \(\left(148+4\right).32:2=2432\)
Lần sau bạn lưu ý ghi đầy đủ yêu cầu đề:
$\frac{4}{13}+\frac{15}{22}+\frac{9}{13}+\frac{7}{22}-2$
$=(\frac{4}{13}+\frac{9}{13})+(\frac{15}{22}+\frac{7}{22})-2$
$=\frac{13}{13}+\frac{22}{22}-2=1+1-2=0<1$
P/s: Bạn lưu ý lần sau ghi đầy đủ yêu cầu đề bài.