Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Giải;
1) \(347.222-222.\left(216+184\right):8\)
\(=347.222-222.400:8\)
\(=347.222-222.50\)
\(=222.\left(347-50\right)\)
\(=222.297\)
\(=65934\)
2) \(132-\left[116-\left(132-128\right).22\right]\)
\(=132-\left[116-4.22\right]\)
\(=132-\left[116-88\right]\)
\(=132-28\)
\(=104\)
3) \(16:\left\{400:\left[200-\left(37+46.3\right)\right]\right\}\)
\(=16:\left\{400:\left[200-\left(37+138\right)\right]\right\}\)
\(=16:\left\{400:\left[200-175\right]\right\}\)
\(=16:\left\{400:25\right\}\)
\(=16:16\)
\(=1\)
4) \(\left\{184:\left[96-124:31\right]-2\right\}.3651\)
\(=\left\{184:\left[96-4\right]-2\right\}.3651\)
\(=\left\{184:92-2\right\}.3651\)
\(=\left\{2-2\right\}.3651\)
\(=0.3651\)
\(=0\)
5) \(46-\left[\left(16+71.4\right):15\right]-2\)
\(=46-\left[\left(16+284\right):15\right]-2\)
\(=46-\left[300:15\right]-2\)
\(=46-20-2\)
\(=24\)
6) \(3^3.18+72.4^2-41.18\)
\(=18.\left(27-41\right)+72.16\)
\(=18.-14+1152\)
\(=-252+1152\)
\(=900\)
Giải: (tiếp)
7) \(\left(56.46-25.23\right):23\)
\(=\left(2576-575\right):23\)
\(=2001:23\)
\(=87\)
8) \(\left(28.54+56.36\right):21:2\)
\(=\left(1512+2016\right):21:2\)
\(=3528:21:2\)
\(=84\)
9) \(\left(76.34-19.64\right):\left(38.9\right)\)
\(=\left(2584-1216\right):342\)
\(=1368:342\)
\(=4\)
10) \(\left(2+4+6+...+100\right).\left(36.333-108.111\right)\)
\(=\left(2+4+6+...+100\right).\left(11988-11988\right)\)
\(=\left(2+4+6+...+100\right).0\)
\(=0\)
11) \(\left(5.4^{11}-3.16^5\right):4^{10}\)
\(=5.4^{11}:4^{10}-3.16^5:4^{10}\)
\(=5.4-3.1\)
\(=20-3\)
\(=17\)
12) \(7256.4375-725:3650+4375.7255\)
\(=4375.\left(7256+7255\right)-\dfrac{29}{146}\)
\(=4375.14511-\dfrac{29}{146}\)
\(=63485624,8\)
Câu 12 ko chắc!
\(\dfrac{3}{5.7}+\dfrac{3}{7.9}+...+\dfrac{3}{59.61}\)
= \(\dfrac{2}{2}.\left(\dfrac{3}{5.7}+\dfrac{3}{7.9}+...+\dfrac{3}{59.61}\right)\)
= \(\dfrac{3}{2}.\left(\dfrac{2}{5.7}+\dfrac{2}{7.9}+...+\dfrac{2}{59.61}\right)\)
= \(\dfrac{3}{2}.\left(\dfrac{1}{5}-\dfrac{1}{7}+\dfrac{1}{7}-\dfrac{1}{9}+...+\dfrac{1}{59}-\dfrac{1}{61}\right)\)
= \(\dfrac{3}{2}.\left(\dfrac{1}{5}-\dfrac{1}{61}\right)\)
=\(\dfrac{3}{2}.\dfrac{56}{305}\)
= \(\dfrac{78}{305}\)
\(\left(x^2-4\right)\left(6-2x\right)=0\) ⇔ \(x^2-4=0\) hoặc \(6-2x=0\)
*Nếu \(x^2-4=0\)
⇒ x2 = 4
⇒ x ∈ {2 ; -2}
*Nếu \(6-2x=0\)
⇒2x = 6
⇒ x = 6 : 2 = 3
Vậy x ∈ { -2 ; 2 ; 3 }
Bài 1 :
a, Ta có : \(\left(-123\right)+\left|-13\right|+\left(-7\right)\)
= \(\left(-123\right)+13+\left(-7\right)=\left(-117\right)\)
b, Ta có : \(\left|-10\right|+\left|45\right|+\left(-\left|-455\right|\right)+\left|-750\right|\)
= \(10+45-455+750=350\)
c, Ta có : \(-\left|-33\right|+\left(-15\right)+20-\left|45-40\right|-57\)
= \(\left(-33\right)+\left(-15\right)+20-5-57=-90\)
Bài 1 :
a/ \(a^3.a^9=a^{3+9}=a^{12}\)
b/\(\left(a^5\right)^7=a^{5.7}=a^{35}\)
c/ \(\left(a^6\right).4.a^{12}=a^{24}.a^{12}.4=a^{24+12}.4=a^{36}.4\)
d/ \(\left(2^3\right)^5.\left(2^3\right)^3=2^{15}.2^9=2^{15+9}=2^{24}\)
e/ \(5^6:5^3+3^3.3^2\)
\(=5^3+3^5=125+243=368\)
i/ \(4.5^2-2.3^2\)
\(=2^2.5^2-2.3^2\)
\(=2^2.25-2^2.14\)
\(=2^2.\left(25-14\right)\)
\(=2^2.11\)
\(=4.11=44\)