Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a: \(=\dfrac{4x-2+6x^2-6x+2x^2+1}{2x\left(2x-1\right)}=\dfrac{8x^2-2x-1}{2x\left(2x-1\right)}\)
c: \(=\dfrac{x^3+2x+2x^2+2x+x^2-x+1}{\left(x+1\right)\left(x^2-x+1\right)}\)
\(=\dfrac{x^3+3x^2+3x+1}{\left(x+1\right)\left(x^2-x+1\right)}=\dfrac{x^2+2x+1}{x^2-x+1}\)
a) Rút gọn thu được kết quả: 3;
b) Ta có MC = 3x (x - 3)
Thực hiện tính toán thu được kết quả: x 2 − 6 x + 9 3 x ( x − 3 ) = x − 3 3 x
c) Trước tiên biến đổi: 3 + 3 x = 3 ( x + 1 ) x ; 3 3 ( x + 1 ) x = x x + 1
Thay vào A và thu gọn ta được A = 4 x + 3 x
Bài 1:
b: \(=\dfrac{x+3-4-x}{x-2}=\dfrac{-1}{x-2}\)
Bài 2:
a: \(=\dfrac{x+1}{2\left(x+3\right)}+\dfrac{2x+3}{x\left(x+3\right)}\)
\(=\dfrac{x^2+x+4x+6}{2x\left(x+3\right)}=\dfrac{x^2+5x+6}{2x\left(x+3\right)}=\dfrac{x+2}{2x}\)
d: \(=\dfrac{3}{2x^2y}+\dfrac{5}{xy^2}+\dfrac{x}{y^3}\)
\(=\dfrac{3y^2+10xy+2x^3}{2x^2y^3}\)
e: \(=\dfrac{x^2+2xy+x^2-2xy-4xy}{\left(x+2y\right)\left(x-2y\right)}=\dfrac{2x^2-4xy}{\left(x+2y\right)\cdot\left(x-2y\right)}=\dfrac{2x}{x+2y}\)
\(1,=4x^2-1\\ 2,=\left(x-4\right)^2-9y^2=\left(x-3y-4\right)\left(x+3y-4\right)\)
1)\(\left(2x+1\right)\left(2x-1\right)=\left(2x\right)^2-1^2=4x^2-1\)
2)\(x^2-8x-9y^2+16=\left(x^2-8x+16\right)-9y^2=\left(x^2-8x+4^2\right)-\left(3y\right)^2=\left(x-4\right)^2-\left(3y\right)^2=\left[\left(x-4\right)-3y\right]\left[\left(x-4\right)+3y\right]=\left(x-4-3y\right)\left(x-4+3y\right)\)
a/
\(\frac{a+b+c}{\left(a+b\right)^2-c\left(a+b\right)}.\frac{2a+2b}{a^2+2ab-c^2+b^2}\)
\(=\frac{a+b+c}{\left(a+b\right)\left(a+b-c\right)}.\frac{2\left(a+b\right)}{\left(a+b+c\right)\left(a+b-c\right)}\)
\(=\frac{2}{\left(a+b-c\right)^2}\)
b/ \(\frac{3x+3y}{x^2+y^2-2xy}:\frac{6x+6y}{ax-by+bx-ay}\)
\(=\frac{3\left(x+y\right)}{\left(x-y\right)^2}.\frac{\left(x-y\right)\left(a-b\right)}{6\left(x+y\right)}\)
\(=\frac{a-b}{2\left(x-y\right)}\)
c) \(\dfrac{x-2}{x-1}+\dfrac{6}{x^2-x}\)
\(=\dfrac{x\left(x-2\right)}{x\left(x-1\right)}+\dfrac{6}{x\left(x-1\right)}\)
\(=\dfrac{x^2-2x+6}{x\left(x-1\right)}\)
\(=\dfrac{x^2-2x+6}{x^2-x}\)
d) \(\dfrac{x+1}{x^2-4}-\dfrac{1}{x^2+2x}\)
\(=\dfrac{x+1}{\left(x+2\right)\left(x-2\right)}-\dfrac{1}{x\left(x+2\right)}\)
\(=\dfrac{x\left(x+1\right)}{x\left(x+2\right)\left(x-2\right)}-\dfrac{x-2}{x\left(x+2\right)\left(x-2\right)}\)
\(=\dfrac{x^2+x-x+2}{x\left(x+2\right)\left(x-2\right)}\)
\(=\dfrac{x^2+2}{x\left(x^2-4\right)}\)
\(=\dfrac{x^2+2}{x^3-4x}\)