Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Giải:
1) (-8/13:3/7+-5/13:3/7).(-4)3.|-3|/7
=[7/3.(-8/13+-5/13)].-192/7
=[7/3.(-1)].-192/7
=-7/3.-192/7
=64
2) 75%-(5/2+5/3)+(-1/2)2
=3/4-25/6+1/4
=(3/4+1/4)-25/6
=1-25/6
=-19/6
Chúc bạn học tốt!
1) \(\left(\dfrac{-8}{13}:\dfrac{3}{7}+\dfrac{-5}{13}:\dfrac{3}{7}\right).\dfrac{\left(-4\right).|-3|}{7}\)
= \(\left[\left(\dfrac{-8}{13}+\dfrac{-5}{13}\right):\dfrac{3}{7}\right].\dfrac{-64.3}{7}\)
= \(\left[-1:\dfrac{3}{7}\right].\dfrac{-192}{7}\)
= \(\dfrac{-7}{3}.\dfrac{-192}{7}\)
= \(64\)
2) \(75\%-\left(\dfrac{5}{2}+\dfrac{5}{3}\right)+\left(-\dfrac{1}{2}\right)^2\)
= \(\dfrac{3}{4}-\dfrac{25}{6}+\dfrac{1}{4}\)
= \(\left(\dfrac{3}{4}+\dfrac{1}{4}\right)-\dfrac{25}{6}\)
= \(1-\dfrac{25}{6}\)
= \(\dfrac{-19}{6}\)
Chúc bạn học tốt !
`|5/4 x-7/2| -|5/8 x +3/5|=0`
`|5/4 x-7/2|=|5/8 x+3/5|`
\(\left[{}\begin{matrix}\dfrac{5}{4}x-\dfrac{7}{2}=\dfrac{5}{8}x+\dfrac{3}{5}\\\dfrac{5}{4}x-\dfrac{7}{2}=-\dfrac{5}{8}x-\dfrac{3}{5}\end{matrix}\right.\\ \left[{}\begin{matrix}x=\dfrac{164}{25}\\x=\dfrac{116}{75}\end{matrix}\right.\)
Vậy....
`|7/5 x+2/3| = |4/3 x-1/4|`
\(\left[{}\begin{matrix}\dfrac{7}{5}x+\dfrac{2}{3}=\dfrac{4}{3}x-\dfrac{1}{4}\\\dfrac{7}{5}x+\dfrac{2}{3}=-\dfrac{4}{3}x+\dfrac{1}{4}\end{matrix}\right.\\ \left[{}\begin{matrix}x=-\dfrac{55}{4}\\x=-\dfrac{25}{164}\end{matrix}\right.\)
\(\dfrac{4-x}{-5}=\dfrac{-5}{4-x}\)
\(\left(4-x\right)^2=25=5^2=\left(-5\right)^2\)
4-x=5 hoặc 4-x=-5
x=-1 hoặc x=9
\(x+\left|\dfrac{1}{2}-\dfrac{1}{3}\right|=\left|\dfrac{-2}{3}-\dfrac{1}{4}\right|\)
\(x+\left|\dfrac{1}{6}\right|=\left|\dfrac{-11}{12}\right|\)
\(x+\dfrac{1}{6}=\dfrac{11}{12}\)
\(x=\dfrac{11}{12}-\dfrac{1}{6}\)
\(x=\dfrac{3}{4}\)
Vậy ...
\(Bài.2:\\ a,7.3^x+15=78\\ \Leftrightarrow7.3^x=78-15=63\\ \Leftrightarrow3^x=\dfrac{63}{7}=9\\ Mà:3^2=9\\ Nên:3^x=3^2\\ Vậy:x=2\\ --\\ b,\left(3x-2\right)^3-11=53\\ \Rightarrow\left(3x-2\right)^3=53+11=64\\ Mà:4^3=64\\ Nên:\left(3x-2\right)^3=4^3\\ \Rightarrow3x-2=4\\ Vậy:3x=4+2=6\\ Vậy:x=\dfrac{6}{3}=2\)
Bài 1: D = 612 + 15 × 212 × 31112 × 611 + 7 × 84 × 274
Đầu tiên, chúng ta tính các phép tính trong ngoặc trước: D = 612 + 15 × 44944 × 66532 + 7 × 7056 × 274
Tiếp theo, chúng ta tính phép nhân: D = 612 + 672660 × 66532 + 153312 × 274
Sau đó, chúng ta tính các phép nhân tiếp theo: D = 612 + 44732282560 + 42060928
Cuối cùng, chúng ta tính phép cộng: D = 44732343100
Vậy kết quả là D = 44732343100.
Bài 2: a) 7 × 3x + 15 = 78
Đầu tiên, chúng ta giải phương trình này bằng cách trừ 15 từ hai vế: 7 × 3x = 63
Tiếp theo, chúng ta chia cả hai vế cho 7: 3x = 9
Cuối cùng, chúng ta chia cả hai vế cho 3: x = 3
Vậy giá trị của x là 3.
b) (3x - 2)3 - 11 = 53
Đầu tiên, chúng ta cộng 11 vào hai vế: (3x - 2)3 = 64
Tiếp theo, chúng ta lấy căn bậc ba của cả hai vế: 3x - 2 = 4
Cuối cùng, chúng ta cộng 2 vào hai vế: 3x = 6
Vậy giá trị của x là 2.
c) (x + 3)4 ≤ 80
Đầu tiên, chúng ta lấy căn bậc tư của cả hai vế: x + 3 ≤ 2
Tiếp theo, chúng ta trừ 3 từ hai vế: x ≤ -1
Vậy giá trị của x là -1 hoặc nhỏ hơn.
d) 7 × 5x + 1 - 3.5x + 1 = 860
Đầu tiên, chúng ta tính các phép tính trong ngoặc trước: 7 × 5x + 1 - 3.5x + 1 = 860
Tiếp theo, chúng ta tính các phép nhân: 35x + 1 - 3.5x + 1 = 860
Sau đó, chúng ta tính phép cộng và trừ: 31.5x + 2 = 860
Cuối cùng, chúng ta trừ 2 từ hai vế: 31.5x = 858
Vậy giá trị của x là 27.238 hoặc gần đúng là 27.24.
e) 2x + 24 = 5y
Đây là phương trình với hai ẩn x và y, không thể tìm ra một giá trị duy nhất cho x và y chỉ dựa trên một phương trình. Chúng ta cần thêm thông tin hoặc một phương trình khác để giải bài toán này.
1) \(2\left|\dfrac{1}{2}x-\dfrac{1}{3}\right|-\dfrac{3}{2}=\dfrac{1}{4}\)
\(\Leftrightarrow2\left|\dfrac{1}{2}x-\dfrac{1}{3}\right|=\dfrac{1}{4}+\dfrac{3}{2}\)
\(\Leftrightarrow2\left|\dfrac{1}{2}x-\dfrac{1}{3}\right|=\dfrac{7}{4}\)
\(\Leftrightarrow\left|\dfrac{1}{2}x-\dfrac{1}{3}\right|=\dfrac{7}{4}:2\)
\(\Leftrightarrow\left|\dfrac{1}{2}x-\dfrac{1}{3}\right|=\dfrac{7}{8}\)
\(\Leftrightarrow\left[{}\begin{matrix}\dfrac{1}{2}x-\dfrac{1}{3}=-\dfrac{7}{8}\\\dfrac{1}{2}x-\dfrac{1}{3}=\dfrac{7}{8}\end{matrix}\right.\)
\(\Leftrightarrow\left[{}\begin{matrix}\dfrac{1}{2}x=-\dfrac{7}{8}+\dfrac{1}{3}\\\dfrac{1}{2}x=\dfrac{7}{8}+\dfrac{1}{3}\end{matrix}\right.\)
\(\Leftrightarrow\left[{}\begin{matrix}\dfrac{1}{2}x=-\dfrac{13}{24}\\\dfrac{1}{2}x=\dfrac{29}{24}\end{matrix}\right.\)
\(\Leftrightarrow\left[{}\begin{matrix}x=\left(-\dfrac{13}{24}\right):\dfrac{1}{2}\\x=\dfrac{29}{24}:\dfrac{1}{2}\end{matrix}\right.\)
\(\Leftrightarrow\left[{}\begin{matrix}x=-\dfrac{13}{12}\\x=\dfrac{29}{12}\end{matrix}\right.\)
2) \(\dfrac{3}{4}-2\left|2x-\dfrac{2}{3}\right|=2\)
\(\Leftrightarrow2\left|2x-\dfrac{2}{3}\right|=\dfrac{3}{4}-2\)
\(\Leftrightarrow2\left|2x-\dfrac{2}{3}\right|=\dfrac{-5}{8}\)
\(\Leftrightarrow\left|2x-\dfrac{2}{3}\right|=\dfrac{-5}{8}:2\)
\(\Leftrightarrow\left|2x-\dfrac{2}{3}\right|=\dfrac{-5}{16}\)
\(\Leftrightarrow\left[{}\begin{matrix}2x-\dfrac{2}{3}=\dfrac{-5}{16}\\2x-\dfrac{2}{3}=\dfrac{5}{16}\end{matrix}\right.\)
\(\Leftrightarrow\left[{}\begin{matrix}2x=\dfrac{-5}{16}+\dfrac{2}{3}\\2x=\dfrac{5}{16}+\dfrac{2}{3}\end{matrix}\right.\)
\(\Leftrightarrow\left[{}\begin{matrix}2x=\dfrac{17}{48}\\2x=\dfrac{47}{48}\end{matrix}\right.\)
\(\Leftrightarrow\left[{}\begin{matrix}x=\dfrac{17}{48}:2\\x=\dfrac{47}{48}:2\end{matrix}\right.\)
\(\Leftrightarrow\left[{}\begin{matrix}x=\dfrac{17}{96}\\x=\dfrac{47}{96}\end{matrix}\right.\)
\(=\dfrac{2}{3}+\dfrac{1}{5}-\dfrac{2}{3}-4\)
\(=\dfrac{1}{5}-4=\dfrac{-19}{5}\)