\(\frac{\left(3\sqrt{8}-6\sqrt{\frac{1}{2}}-2\sqrt{18}+3\sqrt{50}\right)}{\...">
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

28 tháng 7 2016

\(\left(\sqrt{4,5}-\frac{1}{2}.\sqrt{72}+5\sqrt{\frac{1}{2}}\right).\left(42\sqrt{\frac{25}{6}}-10\sqrt{\frac{3}{2}}-12\sqrt{\frac{98}{3}}\right)\)

=\(\left(\frac{3\sqrt{2}}{2}-3\sqrt{2}+\frac{5\sqrt{2}}{2}\right).\left(35\sqrt{6}-5\sqrt{6}-28\sqrt{6}\right)\)

=\(\left(\frac{3\sqrt{2}-6\sqrt{2}+5\sqrt{2}}{2}\right).2\sqrt{6}\)

=\(2\sqrt{2}.\sqrt{6}=4\sqrt{3}\)

12 tháng 10 2020

a) \(\left(\frac{\sqrt{9}}{2}+\frac{\sqrt{1}}{2}-\sqrt{2}\right)\sqrt{2}\)

\(=\frac{3\sqrt{2}}{2}+\frac{\sqrt{2}}{2}-2\)

\(=\frac{4\sqrt{2}}{2}-2=2\sqrt{2}-2\)

b) \(\left(\frac{\sqrt{8}}{3}-\sqrt{24}+\frac{\sqrt{50}}{3}\right)\sqrt{6}\)

\(=\frac{4\sqrt{3}}{3}-12+\frac{10\sqrt{3}}{3}\)

\(=\frac{14\sqrt{3}}{3}-12\)

c) \(\left(\sqrt{6}+\sqrt{2}\right)\left(\sqrt{3}-\sqrt{1}\right)\) (đã sửa đề)

\(=\left(\sqrt{3}+1\right)\left(\sqrt{3}-1\right)\sqrt{2}\)

\(=\left(3-1\right)\sqrt{2}\)

\(=2\sqrt{2}\)

d) \(\left(3\sqrt{2}+1\right)\left(\sqrt{3\sqrt{2}-1}\right)\)

\(=\sqrt{3\sqrt{2}+1}\cdot\left(\sqrt{3\sqrt{2}+1}\cdot\sqrt{3\sqrt{2}-1}\right)\)

\(=\sqrt{3\sqrt{2}+1}\cdot\sqrt{18-1}\)

\(=\sqrt{3\sqrt{2}+1}\cdot\sqrt{17}\)

...

13 tháng 7 2016

a) Kết quả rút gọn xấu (+dài) nữa. (có thể đề sai)

b) 

\(\left(\frac{\sqrt{14}-\sqrt{7}}{1-\sqrt{2}}+\frac{\sqrt{15}-\sqrt{5}}{1-\sqrt{3}}\right):\frac{1}{\sqrt{7}-\sqrt{5}}\)

\(=\left[\frac{-\sqrt{7}\left(1-\sqrt{2}\right)}{1-\sqrt{2}}+\frac{-\sqrt{5}\left(1-\sqrt{3}\right)}{1-\sqrt{3}}\right].\left(\sqrt{7}-\sqrt{5}\right)\)

\(=-\left(\sqrt{7}+\sqrt{5}\right)\left(\sqrt{7}-\sqrt{5}\right)=-\left(7-5\right)=-2\)

c) \(\frac{\sqrt{5-2\sqrt{6}}+\sqrt{8-2\sqrt{15}}}{\sqrt{7+2\sqrt{10}}}=\frac{\sqrt{\left(\sqrt{3}-\sqrt{2}\right)^2}+\sqrt{\left(\sqrt{5}-\sqrt{3}\right)^2}}{\sqrt{\left(\sqrt{5}+\sqrt{2}\right)^2}}\)

\(=\frac{\sqrt{3}-\sqrt{2}+\sqrt{5}-\sqrt{3}}{\sqrt{5}+\sqrt{2}}=\frac{\sqrt{5}-\sqrt{2}}{\sqrt{5}+\sqrt{2}}=\frac{\left(\sqrt{5}-\sqrt{2}\right)^2}{3}\)

14 tháng 7 2016

a) \(\left(\frac{2\sqrt{3}-\sqrt{6}}{\sqrt{8}-2}-\frac{\sqrt{216}}{3}\right).\frac{1}{\sqrt{6}}=\left[\frac{\sqrt{6}\left(\sqrt{2}-1\right)}{2\left(\sqrt{2}-1\right)}-2\sqrt{6}\right].\frac{1}{\sqrt{6}}\)

\(=\left(\frac{\sqrt{6}}{2}-2\sqrt{6}\right).\frac{1}{\sqrt{6}}=\frac{1}{2}-2=-\frac{3}{2}\)

7 tháng 9 2019

22) \(\frac{1}{\sqrt{5}+\sqrt{2}}+\frac{1}{\sqrt{5}-\sqrt{2}}\)

\(=\frac{\left(\sqrt{5}-\sqrt{2}\right)+\left(\sqrt{5}+\sqrt{2}\right)}{\left(\sqrt{5}+\sqrt{2}\right)\left(\sqrt{5}-\sqrt{2}\right)}\)

\(=\frac{2\sqrt{5}}{\sqrt{5^2}-\sqrt{2^2}}\)

\(=\frac{2\sqrt{5}}{5-2}=\frac{2\sqrt{5}}{3}\)