Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a)\(\frac{3^6.45^4-15^{13}.5^{-9}}{27^4.25^3+45^6}=\frac{3^6.\left(3^2.5\right)^4-\left(3.5\right)^{13}.5^{-9}}{\left(3^3\right)^4.\left(5^2\right)^3+\left(3^2.5\right)^6}=\frac{3^6.3^8.5^4-3^{13}.5^{13}.5^{-9}}{3^{12}.5^6+3^{12}.5^6}\)
\(=\frac{3^{14}.5^4-3^{13}.5^4}{3^{12}.5^6+3^{12}.5^6}=\frac{3^{13}.5^4.\left(3-1\right)}{3^{12}.5^6\left(1+1\right)}=\frac{3^{13}.5^4}{3^{12}.5^6}=\frac{3}{5^2}=\frac{3}{25}\)
b)\(\frac{4^6.9^5+6^9.120}{-8^4.3^{12}-6^{11}}=\frac{\left(2^2\right)^6.\left(3^2\right)^5+\left(2.3\right)^9.2^3.3.5}{-\left(2^3\right)^4.3^{12}-\left(2.3\right)^{11}}=\frac{2^{12}.3^{10}+2^9.3^9.2^3.3.5}{-2^{12}.3^{12}-2^{11}.3^{11}}\)
\(=\frac{2^{12}.3^{10}+2^{12}.3^{10}.5}{-2^{12}.3^{12}-2^{11}.3^{11}}=\frac{2^{12}.3^{10}+2^{12}.3^{10}.5}{-\left(2^{12}.3^{12}+2^{11}.3^{11}\right)}=\frac{2^{12}.3^{10}\left(1+5\right)}{-\left[2^{11}.3^{11}\left(2.3+1\right)\right]}=\frac{2.6}{-\left(3.7\right)}=\frac{4}{-7}\)
\(=-\dfrac{2^{12}\cdot3^{10}+3^9\cdot2^9\cdot2^3\cdot3\cdot5}{2^{12}\cdot3^{12}+2^{11}\cdot3^{11}}\)
\(=-\dfrac{2^{12}\cdot3^{10}+3^{10}\cdot2^{12}\cdot5}{2^{11}\cdot3^{11}\cdot7}\)
\(=-\dfrac{3^{10}\cdot2^{12}\cdot6}{2^{11}\cdot3^{11}\cdot7}=-\dfrac{2}{3}\cdot\dfrac{6}{7}=\dfrac{-12}{21}=-\dfrac{4}{7}\)
\(=\dfrac{2^{12}\cdot3^{10}+2^9\cdot3^9\cdot2^3\cdot3\cdot5}{2^{12}\cdot3^{12}-2^{11}\cdot3^{11}}\)
\(=\dfrac{2^{12}\cdot3^{10}\cdot6}{2^{11}\cdot3^{11}\cdot5}=\dfrac{2}{3}\cdot\dfrac{6}{5}=\dfrac{12}{15}=\dfrac{4}{5}\)
Ta có : \(A=\frac{4^6.9^5+6^9.120}{-8^4.3^{12}-6^{11}}=\frac{\left(2^2\right)^6.\left(3^2\right)^5+2^9.3^9.2^3.3.5}{-\left(2^3\right)^4.3^{12}-2^{11}.3^{11}}\)
\(=\frac{2^{12}.3^{10}+2^{12}.3^{10}.5}{-2^{12}.3^{12}-2^{11}.3^{11}}=\frac{2^{12}.3^{10}\left(1+5\right)}{2^{11}.3^{11}\left(-2.3-1\right)}=\frac{2\left(1+5\right)}{3\left(-6-1\right)}=\frac{2.6}{3.\left(-7\right)}=\frac{-12}{21}\)
\(\frac{4^6.9^5+6^9.120}{8^4.3^{12}-6^{11}}=\frac{2^{12}.3^{10}+3^{10}.2^{12}.5}{2^{12}.3^{12}-2^{11}.3^{11}}=\frac{2^{12}.3^{10}.6}{6^{12}-6^{11}}=\frac{2^{12}.3^{10}.6}{6^{11}\left(6-1\right)}=\frac{2^{10}.3^{10}\left(2^2+1\right).6}{6^{11}.5}=\frac{6^{11}.5}{6^{11}.5}=1\)