Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(A=\frac{\left(5^2\right)^3\cdot5^5}{6\cdot5^{10}}\)
\(A=\frac{5^{2+3}\cdot5^5}{6\cdot5^{10}}\)
\(A=\frac{5^5\cdot5^5}{6\cdot5^{10}}\)
\(A=\frac{5^{5+5}}{6\cdot5^{10}}\)
\(A=\frac{5^{10}}{6\cdot5^{10}}\)
\(\Rightarrow A=\frac{1}{6}\)
\(A=\frac{25^3.5^5}{6.5^{10}}=\frac{\left(5^2\right)^3.5^5}{6.5^{10}}=\frac{5^5.5^5}{6.5^{10}}=\frac{1}{6}.\)
\(\frac{5^3.5^8}{25^4}\)
\(=\frac{5^{11}}{25^4}\)
\(=\frac{48828125}{390625}\)
\(\frac{5^3.5^8}{25^4}=\frac{5^8.5^3}{\left(5^2\right)^4}\)
\(\Rightarrow\frac{5^8.5^3}{5^8}=5^3=125\)
Hk tốt
=2^12.3^4.(3-1)/2^12.3^5(3+1)-5^10.7^3.(1-7)/5^9.7^3.(1+2^3)
2/3.4-5.(-6)/9
=1/6-(-10/3)
1/6+10/3
7/2
\(A=\frac{25^3.5^5}{6.5^{10}}=\frac{\left(5^2\right)^3.5^5}{6.5^{10}}=\frac{5^6.5^5}{6.5^{10}}=\frac{5^{11}}{6.5^{10}}=\frac{5}{6}\)
\(B=\frac{2^5.6^3}{8^2.9^2}=\frac{2^5.2^3.3^3}{\left(2^3\right)^2.\left(3^2\right)^2}=\frac{2^8.3^3}{2^6.3^4}=\frac{4}{3}\)
Phạm Hồng Anh k tớ nhé
a) \(\frac{6^{15}+6^{13}}{6^{12}}=\frac{6^{13}.\left(6^2+1\right)}{6^{12}}=6.37=222\)
b) \(\frac{2^6.5^7}{10^6}=\frac{2^6.5^6.5}{10^6}=\frac{10^6.5}{10^6}=5\)
a, Ta có: \(A=\frac{6^{15}+6^{13}}{6^{12}}=\frac{6^{12}\left(6^3+6\right)}{6^{12}}=6^3+6\) \(=222\)
b, Ta có: \(B=\frac{2^6.5^7}{10^6}=\frac{2^6.5^6.5}{10^6}=\frac{\left(2.5\right)^6.5}{10^6}\) \(=\frac{10^6.5}{10^6}=5\)
Đặt \(A=\frac{1}{4.9}+\frac{1}{9.14}++\frac{1}{14.19}+......+\frac{1}{44.49}\)
\(A=\frac{1}{5}.\left(\frac{5}{4.9}+\frac{5}{9.14}+\frac{5}{14.19}+.....+\frac{5}{44.49}\right)\)
\(A=\frac{1}{5}.\left(\frac{1}{4}-\frac{1}{9}+\frac{1}{9}-\frac{1}{14}+\frac{1}{14}-\frac{1}{19}+.....+\frac{1}{44}-\frac{1}{49}\right)\)
\(A=\frac{1}{5}.\left(\frac{1}{4}-\frac{1}{49}\right)=\frac{1}{5}.\frac{45}{196}=\frac{9}{196}\)
Đặt \(B=\frac{1-3-5-7-.......47-49}{89}\)
\(B=\frac{1-\left(3+5+7+......+47+49\right)}{89}\)
Từ 3 -> 49 có: (49-3):2+1=24(số hạng)
=>\(3+5+7+....+47+49=\frac{\left(49+3\right).24}{2}=624\)
=>\(B=\frac{1-624}{89}=\frac{-623}{89}=-7\)
Vậy \(\left(\frac{1}{4.9}+\frac{1}{9.14}+\frac{1}{14.19}+....+\frac{1}{44.49}\right).\frac{1-3-5-,,,,,-49}{89}=A.B=\frac{9}{196}.\left(-7\right)=-\frac{9}{28}\)
Tử số: 2^19 x (3^3)^3 x 5+15 x 4^9 x(3^2)^4
=2^19 x3^9x5 + 15 x(2^2)^9 x 3^8
= 2^19 x 3^9 x 5 +3 x 5 x 2^18 x 3^8
= 2^19 x 3^9 x 5+ 3^9 x 5 x 2^18
= 5 x 3^9 x 2^18 (2+1)
=5 x 3^10 x 2^18
Mẫu số
= (2 x 3)^9 x 2^10 -12^10
= 2^9 x 3^9 x 2^10 - (2^2x3)^10
= 2^9 x 3^9 x 2^10 -2^20 x 3^10
= 2^19 x 3^9 - 2^20 x 3^10
= 2^19 x 3^9 (1-2 x 3)
= 2^19 x 3^9 x(-5)
Chia cả tử và mẫu ta có
(5 x 3^10 x 2^18) / (2^19 x 3^9 x (-5)) = -3/2
\(H=\frac{2^{19}.27^3.5-15.\left(-4\right)^9.9^4}{6^9.2^{10}-\left(-12\right)^{10}}\)
\(\Rightarrow\)\(H=\frac{2^{19}.3^9.5-3.5-1.2^{18}.3^8}{2^9.3^9.2^{10}-6^{10}.2^{10}}=\frac{2^{19}.3^9.5-3^9.5-2^{18}}{2^{19}.3^9-3^{10}.2^{10}.2^{10}}=\frac{2^{19}.3^9.5-3^9.5-2^{18}}{2^{19}.3^9-3^{10}.2^{20}}\)
\(\Rightarrow H=\frac{2^{18}.3^9.5\left(2-1\right)}{2^{19}.3^9.\left(1-3.2\right)}=\frac{5}{2.\left(-5\right)}=\frac{-1}{2}\)
Vậy \(H=\frac{-1}{2}\)
= \(\frac{5^6.5^5}{6.5^{10}}\) = \(\frac{5^{11}}{6.5^{10}}\)= \(\frac{5}{6}\)
\(\frac{25^3.5^5}{6.5^{10}}\)=\(\frac{5^{11}}{6.5^{10}}\)=\(\frac{5}{6}\)
ok 100% chính xác