Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(\frac{1}{x\left(x+1\right)}+\frac{1}{\left(x+1\right)\left(x+2\right)}+\frac{1}{\left(x+2\right)\left(x+3\right)}+.....+\frac{1}{\left(x+99\right)\left(x+100\right)}\)
\(=\frac{1}{x}-\frac{1}{x+1}+\frac{1}{x+1}-\frac{1}{x+2}+\frac{1}{x+2}-\frac{1}{x+3}+.....+\frac{1}{x+99}-\frac{1}{x+100}\)
\(=\frac{1}{x}-\frac{1}{x+100}\)
\(=\frac{1}{x}-\frac{1}{x+1}+\frac{1}{x+1}-\frac{1}{x+2}+...+\frac{1}{x+99}-\frac{1}{x+100}=\frac{1}{x}-\frac{1}{x+100}=\frac{x+100-x}{x\left(x+100\right)}=\frac{100}{x\left(x+100\right)}\)
\(ĐKXĐ:x\ne3;x\ne-1\)
Nếu x=0 là nghiệm của phương trình
Nếu x khác 0 ta có:
\(\frac{1}{2\left(x-3\right)}+\frac{1}{2\left(x-1\right)}=\frac{2}{\left(x-1\right)\left(x-3\right)}\)
\(\Leftrightarrow\frac{x-1+x-3}{\left(x-1\right)\left(x-3\right)}=\frac{4}{\left(x-1\right)\left(x-3\right)}\)
\(\Leftrightarrow\frac{2x-4}{\left(x-1\right)\left(x-3\right)}=\frac{4}{\left(x-1\right)\left(x-3\right)}\)
\(\Leftrightarrow2x-4=4\)
\(\Leftrightarrow x=4\)
\(\frac{x}{2\left(x-3\right)}+\frac{x}{2\left(x+1\right)}=\frac{2x}{\left(x+1\right)\left(x-3\right)}\left(x\ne-1;x\ne3\right)\)
<=> \(\frac{x}{2\left(x-3\right)}+\frac{x}{2\left(x+1\right)}-\frac{2x}{\left(x+1\right)\left(x-3\right)}=0\)
<=> \(\frac{x\left(x+1\right)}{2\left(x-3\right)\left(x+1\right)}+\frac{x\left(x-3\right)}{2\left(x+1\right)\left(x-3\right)}-\frac{2x\cdot2}{2\left(x+1\right)\left(x-3\right)}=0\)
<=> \(\frac{x^2+x+x^2-3x-4x}{2\left(x-3\right)\left(x+1\right)}=0\)
=> 2x2-6x=0
<=> 2x(x-3)=0
<=> \(\orbr{\begin{cases}2x=0\\x-3=0\end{cases}}\Leftrightarrow\orbr{\begin{cases}x=0\\x=3\end{cases}}\)
ĐCĐK x khác -1 và x khác 3 => x=0
Vậy x=0 là nghiệm của phương trình
\(A=\frac{1}{x.\left(x+1\right)\left(x+2\right)}+\frac{1}{\left(x+1\right)\left(x+2\right)\left(x+3\right)}+...+\frac{1}{\left(x+8\right)\left(x+9\right)\left(x+10\right)}\)
\(\Leftrightarrow2A=\frac{2}{x.\left(x+1\right)\left(x+2\right)}+\frac{2}{\left(x+1\right)\left(x+2\right)\left(x+3\right)}+...+\frac{2}{\left(x+8\right)\left(x+9\right)\left(x+10\right)}\)
\(=\frac{1}{x\left(x+1\right)}-\frac{1}{\left(x+1\right)\left(x+2\right)}+...+\frac{1}{\left(x+8\right)\left(x+9\right)}-\frac{1}{\left(x+9\right)\left(x+10\right)}\)
\(=\frac{1}{x\left(x+1\right)}-\frac{1}{\left(x+9\right)\left(x+10\right)}\)
\(\Rightarrow A=\frac{1}{2}.\left(\frac{1}{x\left(x+1\right)}-\frac{1}{\left(x+9\right)\left(x+10\right)}\right)\)
\(a,\frac{x}{2\left(x-3\right)}+\frac{x}{2\left(x+1\right)}=\frac{2x}{\left(x+1\right)\left(x-3\right)}\)
\(\frac{x\left(x+1\right)}{2\left(x-3\right)\left(x+1\right)}+\frac{x\left(x-3\right)}{2\left(x+1\right)\left(x-3\right)}=\frac{4x}{2\left(x+1\right)\left(x-3\right)}\)
\(x\left(x+1\right)+x\left(x-3\right)=4x\)
\(x^2+x+x^2-3x=4x\)
\(2x^2-2x=4x\)
\(2x^2-2x-4x=0\)
\(2x\left(x-3\right)=0\)
\(2x=0\Leftrightarrow x=0\)
hoặc
\(x-3=0\Leftrightarrow x=3\)
b) \(ĐKXĐ:x\ne\pm4\)
\(5+\frac{96}{x^2-16}=\frac{2x-1}{x+4}-\frac{3x-1}{4-x}\)
\(\Leftrightarrow5+\frac{96}{x^2-16}=\frac{2x-1}{x+4}+\frac{3x-1}{x-4}\)
\(\Leftrightarrow\frac{5\left(x^2-16\right)}{x^2-16}+\frac{96}{x^2-16}=\frac{\left(2x-1\right)\left(x-4\right)}{x^2-16}+\frac{\left(3x-1\right)\left(x+4\right)}{x^2-16}\)
\(\Rightarrow5\left(x^2-16\right)+96=\left(2x-1\right)\left(x-4\right)+\left(3x-1\right)\left(x+4\right)\)
\(\Leftrightarrow5x^2-80+96=2x^2-9x+4+3x^2+11x-4\)
\(\Leftrightarrow5x^2-2x^2-3x^2+9x-11x=4-4+80-96\)
\(\Leftrightarrow-2x=-16\)\(\Leftrightarrow x=8\)( thoả mãn ĐKXĐ )
Vậy tập nghiệm của phương trình là: \(S=\left\{8\right\}\)
a) = \(12a^2b\left(a^2-b^2\right)\)
= \(12a^4b-12a^2b^3\)
b)nhân ra :
= \(2x^4-16x^3+4x^2-3x^3+24x^2-6x+5x^2-40x+10\)
= \(2x^4-19x^3+33x^2-46x+10\)
Tìm x:
a) \(\frac{1}{4}x^2-\left(\frac{1}{4}x^2-2x\right)=-14\)
= \(\frac{1}{4}x^2-\frac{1}{4}x^2+2x=-14\)
=\(2x=-14=>x=-7\)
b) \(x^3+27-x\left(x^2-1\right)=27\)
= \(x^3+27-x^3+x=27\)
= \(27+x=27=>x=0\)
a, ĐKXĐ : \(\left\{{}\begin{matrix}x\ne\pm2\\x\ne0\end{matrix}\right.\)
Ta có : \(\frac{x-4}{x\left(x+2\right)}-\frac{1}{x\left(x-2\right)}=-\frac{2}{\left(x+2\right)\left(x-2\right)}\)
=> \(\frac{\left(x-4\right)\left(x-2\right)}{x\left(x+2\right)\left(x-2\right)}-\frac{x+2}{x\left(x-2\right)\left(x+2\right)}=-\frac{2x}{x\left(x+2\right)\left(x-2\right)}\)
=> \(\left(x-4\right)\left(x-2\right)-x-2=-2x\)
=> \(x^2-4x-2x+8-x-2=-2x\)
=> \(x^2-5x+6=0\)
=> \(\left(x-2\right)\left(x-3\right)=0\)
=> \(\left[{}\begin{matrix}x=2\\x=3\left(TM\right)\end{matrix}\right.\)
=> x = 3 .
Vậy phương trình trên có tập nghiệm là \(S=\left\{3\right\}\)
b, ĐKXĐ : \(x\ne0,-3,-6,-9,-12\)
Ta có : \(\frac{1}{x\left(x+3\right)}+\frac{1}{\left(x+3\right)\left(x+6\right)}+\frac{1}{\left(x+6\right)\left(x+9\right)}+\frac{1}{\left(x+9\right)\left(x+12\right)}=\frac{1}{16}\)
=> \(\frac{1}{x}-\frac{1}{x+3}+\frac{1}{x+3}-\frac{1}{x+6}+\frac{1}{x+6}-\frac{1}{x+9}+\frac{1}{x+9}-\frac{1}{x+12}=\frac{1}{16}\)
=> \(\frac{1}{x}-\frac{1}{x+12}=\frac{1}{16}\)
=> \(\frac{x+12}{x\left(x+12\right)}-\frac{x}{x\left(x+12\right)}=\frac{1}{16}\)
=> \(x\left(x+12\right)=192\)
=> \(x^2+12x-192=0\)
=> \(x^2+2x.6+36-228=0\)
=> \(\left(x+6\right)^2=288\)
=> \(\left[{}\begin{matrix}x=\sqrt{288}-6\\x=-\sqrt{288}-6\end{matrix}\right.\) ( TM )
Vậy phương trình có tập nghiệm là \(S=\left\{\pm\sqrt{288}-6\right\}\)
1) \(\frac{7}{8}x-5\left(x-9\right)=\frac{20x+1,5}{6}\)
<=> \(\frac{21x}{24}-\frac{100\left(x-9\right)}{24}=\frac{80x+6}{24}\)
<=> 21x - 100x + 900 = 80x + 6
<=> -79x - 80x = 6 - 900
<=> -159x = -894
<=> x = 258/53
Vậy S = {258/53}
2) \(\frac{\left(2x+1\right)^2}{5}-\frac{\left(x+1\right)^2}{3}=\frac{7x^2-14x-5}{15}\)
<=> \(\frac{3\left(4x^2+4x+1\right)}{15}-\frac{5\left(x^2+2x+1\right)}{15}=\frac{7x^2-14x-5}{15}\)
<=> 12x2 + 12x + 3 - 5x2 - 10x - 5 = 7x2 - 14x - 5
<=> 7x2 + 2x - 7x2 + 14x = -5 + 2
<=> 16x = 3
<=> x = 3/16
Vậy S = {3/16}
3) 4(3x - 2) - 3(x - 4) = 7x+ 10
<=> 12x - 8 - 3x + 12 = 7x + 10
<=> 9x - 7x = 10 - 4
<=> 2x = 6
<=> x = 3
Vậy S = {3}
4) \(\frac{\left(x+10\right)\left(x+4\right)}{12}-\frac{\left(x+4\right)\left(2-x\right)}{4}=\frac{\left(x+10\right)\left(x-2\right)}{3}\)
<=> \(\frac{x^2+14x+40}{12}+\frac{3\left(x^2+2x-8\right)}{12}=\frac{4\left(x^2+8x-20\right)}{12}\)
<=> x2 + 14x + 40 + 3x2 + 6x - 24 = 4x2 + 32x - 80
<=> 4x2 + 20x - 4x2 - 32x = -80 - 16
<=> -12x = -96
<=> x = 8
Vậy S = {8}
\(\frac{1}{x\left(x+1\right)}+\frac{1}{\left(x+1\right)\left(x+2\right)}+\frac{1}{\left(x+2\right)\left(x+3\right)}+...+\frac{1}{\left(x+9\right)\left(x+10\right)}\)
\(=\frac{1}{x}-\frac{1}{x+1}+\frac{1}{x+1}-\frac{1}{x+2}+\frac{1}{x+2}-\frac{1}{x+3}+...+\frac{1}{x+9}-\frac{1}{x+10}\)
\(=\frac{1}{x}-\frac{1}{x+10}\)
\(=\frac{10}{x\left(x+10\right)}\)
Bạn tham khảo nhé!
cảm ơn bạn nha