K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

8 tháng 7 2016

Ta có:

\(a^2+ac-b^2-bc=\left(a^2-b^2\right)+\left(ac-bc\right)\)

                                    \(=\left(a-b\right)\left(a+b\right)+c\left(a-b\right)\)

                                    \(=\left(a-b\right)\left(a+b+c\right)\)(1)

\(b^2+ab-c^2-ac=\left(b^2-c^2\right)+\left(ab-ac\right)\)

                                    \(=\left(b-c\right)\left(b+c\right)+a\left(b-c\right)\)

                                    \(=\left(b-c\right)\left(a+b+c\right)\)(2)

\(c^2+bc-a^2-ab=\left(c^2-a^2\right)+\left(bc-ab\right)\)

                                    \(=\left(c-a\right)\left(a+c\right)+b\left(c-a\right)\)

                                    \(=\left(c-a\right)\left(a+b+c\right)\)(3)

Ta có : \(\frac{1}{\left(b-c\right)\left(a^2+ac-b^2-bc\right)}\)\(+\frac{1}{\left(c-a\right)\left(b^2+ab-c^2-ac\right)}\)\(+\frac{1}{\left(a-b\right)\left(c^2+bc-a^2-ab\right)}\)(*)

Thế (1),(2),(3) vào (*)

=>\(\frac{1}{\left(b-c\right)\left(a-b\right)\left(a+b+c\right)}+\frac{1}{\left(c-a\right)\left(b-c\right)\left(a+b+c\right)}+\frac{1}{\left(a-b\right)\left(c-a\right)\left(a+b+c\right)}\)

\(\Leftrightarrow\frac{\left(c-a\right)+\left(a-b\right)+\left(b-c\right)}{\left(a-b\right)\left(b-c\right)\left(c-a\right)\left(a+b+c\right)}=0\)

8 tháng 7 2016

Dễ thôi bạn chỉ cần quy đồng thôi

\(\frac{1}{\left(b-c\right)\left(a^2+ac-b^2-bc\right)}+\frac{1}{\left(c-a\right)\left(b^2+ab-c^2-ac\right)}+\)\(\frac{1}{\left(a-b\right)\left(c^2+bc-a^2-ab\right)}\)

=\(\frac{1}{\left(b-c\right)\left(a-b\right)\left(a+b+c\right)}+\frac{1}{\left(c-a\right)\left(b-c\right)\left(a+b+c\right)}\)\(+\frac{1}{\left(a-b\right)\left(c-a\right)\left(a+b+c\right)}\)

=\(\frac{c-a+a-b+b-c}{\left(b-c\right)\left(a-b\right)\left(a+b+c\right)}=0\)

8 tháng 7 2016

Ta có :\(\left(a-b\right)\left(c^2+bc-a^2-ab\right)=\left(a-b\right)\left[\left(c^2-a^2\right)+\left(bc-ab\right)\right]\)

                                                          \(=\left(a-b\right)\left(c-a\right)\left(a+b+c\right)\)

Tương tự : \(\left(b-c\right)\left(a^2+ac-b^2-bc\right)=\left(b-c\right)\left(a-b\right)\left(a+b+c\right)\)

                    \(\left(c-a\right)\left(b^2+ab-c^2-ac\right)=\left(c-a\right)\left(b-c\right)\left(a+b+c\right)\)

\(MTC=\left(a-b\right)\left(b-c\right)\left(c-s\right)\left(a+b+c\right)\)

Kí hiệu biểu thức đã cho bởi \(Q\),ta có :

         \(Q=\frac{c-a+a-b+b-c}{\left(a-b\right)\left(b-c\right)\left(c-a\right)\left(a+b+c\right)}=0\)

25 tháng 1 2017

Xét \(\left(b-c\right)\left(a^2+ac-b^2-bc\right)=\left(b-c\right)\left[\left(a-b\right)\left(a+b\right)+c\left(a-b\right)\right]\)

\(=\left(b-c\right)\left(a-b\right)\left(a+b+c\right)\)

Tương tự:

\(\left(c-a\right)\left(b^2+ab-c^2-ac\right)=\left(c-a\right)\left(b-c\right)\left(a+b+c\right)\)

\(\left(a-b\right)\left(c^2+bc-a^2-ab\right)=\left(a-b\right)\left(c-a\right)\left(a+b+c\right)\)

=> \(P=\frac{1}{\left(b-c\right)\left(a-b\right)\left(a+b+c\right)}+\frac{1}{\left(c-a\right)\left(b-c\right)\left(a+b+c\right)}+\frac{1}{\left(a-b\right)\left(c-a\right)\left(a+b+c\right)}\)

\(=\frac{\left(c-a\right)+\left(a-b\right)+\left(b-c\right)}{\left(b-c\right)\left(a-b\right)\left(c-a\right)\left(a+b+c\right)}=0\)

25 tháng 1 2017

chịu khó quá à

24 tháng 6 2017

Phân thức đại số

26 tháng 3 2016

Đặt  \(A=\frac{c\left(ab+1\right)^2}{b^2\left(bc+1\right)}+\frac{a\left(bc+1\right)^2}{c^2\left(ca+1\right)}+\frac{b\left(ca+1\right)^2}{a^2\left(ab+1\right)}\)  và   \(x=ab+1;\)  \(y=bc+1;\)  \(z=ca+1\)   \(\left(\text{*}\right)\)

Khi đó, với các giá trị tương ứng trên thì biểu thức  \(A\)  trở thành:   \(A=\frac{cx^2}{b^2y}+\frac{ay^2}{c^2z}+\frac{bz^2}{a^2x}\)

Áp dụng bất đẳng thức Cauchy cho bộ ba phân số không âm của biểu thức trên (do  \(a,b,c>0\)), ta có:

 \(A=\frac{cx^2}{b^2y}+\frac{ay^2}{c^2z}+\frac{bz^2}{a^2x}\ge3\sqrt[3]{\frac{cx^2}{b^2y}.\frac{ay^2}{c^2z}.\frac{bz^2}{a^2z}}=3\sqrt[3]{\frac{xyz}{abc}}\)  \(\left(\text{**}\right)\)

Mặt khác, do  \(ab+1\ge2\sqrt{ab}\)  (bất đẳng thức  AM-GM cho hai số \(a,b\) luôn dương)

              nên   \(x\ge2\sqrt{ab}\)  \(\left(1\right)\) (theo cách đặt ở  \(\left(\text{*}\right)\))

Hoàn toàn tương tự với vòng hoán vị   \(a\)  \(\rightarrow\)  \(b\)  \(\rightarrow\)  \(c\) và với chú ý cách đặt ở \(\left(\text{*}\right)\), ta cũng có:

\(y\ge2\sqrt{bc}\)  \(\left(2\right)\)  và  \(z\ge2\sqrt{ca}\)  \(\left(3\right)\)

Nhân từng vế  \(\left(1\right);\)  \(\left(2\right)\)  và  \(\left(3\right)\), ta được  \(xyz\ge2\sqrt{ab}.2\sqrt{bc}.2\sqrt{ca}=8abc\)

Do đó,  \(3\sqrt[3]{\frac{xyz}{abc}}\ge3\sqrt[3]{\frac{8abc}{abc}}=3\sqrt[3]{8}=6\)  \(\left(\text{***}\right)\)  

Từ  \(\left(\text{**}\right)\)  và  \(\left(\text{***}\right)\)  suy ra được   \(A\ge6\), tức  \(\frac{c\left(ab+1\right)^2}{b^2\left(bc+1\right)}+\frac{a\left(bc+1\right)^2}{c^2\left(ca+1\right)}+\frac{b\left(ca+1\right)^2}{a^2\left(ab+1\right)}\ge6\)  (điều phải chứng minh)

Dấu  \("="\)  xảy ra  \(\Leftrightarrow\)  \(a=b=c=1\)

26 tháng 3 2016

mới học lớp 5  thôi

17 tháng 11 2019

\(\frac{1}{\left(b-c\right)\left(a^2+ac-b^2-bc\right)}+\frac{1}{\left(c-a\right)\left(b^2+ab-c^2-ac\right)}-\frac{1}{\left(a-b\right)\left(a^2+ab-c^2-ac\right)}\)

\(=\frac{1}{\left(b-c\right)\left[\left(a-b\right)\left(a+b\right)+c\left(a-b\right)\right]}+\frac{1}{\left(c-a\right)\left[\left(b-c\right)\left(b+c\right)+a\left(b-c\right)\right]}-\frac{1}{\left(a-b\right)\left[\left(a-c\right)\left(a+c\right)-b\left(a-c\right)\right]}\)

\(=\frac{c-a}{\left(a-b\right)\left(c-a\right)\left(b-c\right)\left(a+b+c\right)}+\frac{a-b}{\left(a-b\right)\left(c-a\right)\left(b-c\right)\left(a+b+c\right)}-\frac{b-c}{\left(a-b\right)\left(a-c\right)\left(b-c\right)\left(a+b+c\right)}\)

\(=\frac{c-a}{\left(a-b\right)\left(c-a\right)\left(b-c\right)\left(a+b+c\right)}+\frac{a-b}{\left(a-b\right)\left(c-a\right)\left(b-c\right)\left(a+b+c\right)}+\frac{b-c}{\left(a-b\right)\left(c-a\right)\left(b-c\right)\left(a+b+c\right)}\)\(=\frac{c-a+a-b+b-c}{\left(a-b\right)\left(c-a\right)\left(b-c\right)\left(a+b+c\right)}\)

\(=\frac{0}{\left(a-b\right)\left(c-a\right)\left(b-c\right)\left(a+b+c\right)}\)

\(=0\)