Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a, -7/2 + 3/4 - 17/2 = (-7/2 - 17/2) + 3/4 = -12 + 3/4 = -45/4 = -12,75.
b, -1/12 - 21/8 + 1/3 = -1/12 + 1/3 - 21/8 = 1/4 - 21/8 = -19/8 = -2,375
Bài 1:
a) \(=\dfrac{8}{15}\left(\dfrac{7}{13}+\dfrac{6}{13}\right)=\dfrac{8}{15}.1=\dfrac{8}{15}\)
b) \(=\dfrac{3.3-7-2.4}{12}=-\dfrac{6}{12}=-\dfrac{1}{2}\)
Bài 2:
\(\dfrac{x}{2,7}=-\dfrac{2}{3,6}\Rightarrow x=\dfrac{\left(-2\right).2,7}{3,6}\Rightarrow x=-\dfrac{3}{2}\)
Bài 3:
\(\dfrac{x}{2}=\dfrac{y}{5}=\dfrac{x+y}{2+5}=-\dfrac{21}{7}=-3\)
\(\Rightarrow\left\{{}\begin{matrix}x=\left(-3\right).2=-6\\y=\left(-3\right).5=-10\end{matrix}\right.\)
a) \(\dfrac{4}{9}x + \dfrac{2}{3}x = (\dfrac{4}{9} + \dfrac{2}{3})x = (\dfrac{4}{9} + \dfrac{6}{9})x = \dfrac{{10}}{9}x\);
b) \( - 12{y^2} + 0,7{y^2} = ( - 12 + 0,7){y^2} = - 11,3{y^2}\);
c) \( - 21{t^3} - 25{t^3} = ( - 21 - 25){t^3} = - 46{t^3}\).
a: \(=\dfrac{7}{2}\left(-\dfrac{3}{4}+\dfrac{5}{13}-\dfrac{9}{4}-\dfrac{8}{13}\right)=\dfrac{7}{2}\cdot\left(-3-\dfrac{3}{13}\right)=\dfrac{7}{2}\cdot\dfrac{-42}{13}=\dfrac{-147}{13}\)
b: \(=-12+\dfrac{8}{9}-\dfrac{5}{18}=\dfrac{-216}{18}+\dfrac{16}{18}-\dfrac{5}{18}=\dfrac{-205}{18}\)
c: \(=\dfrac{45}{4}-\dfrac{19}{7}-\dfrac{21}{4}=6-\dfrac{19}{7}=\dfrac{23}{7}\)
d: \(=\dfrac{-1}{4}\left(\dfrac{152}{11}+\dfrac{68}{11}\right)=\dfrac{-1}{4}\cdot20=-5\)
\(\left(5-\frac{2}{3}+\frac{3}{7}\right):\left(24-25+\frac{4}{21}-\frac{8}{21}\right)\)
\(\left(\frac{5.21-14+9}{21}\right):\left(\frac{-21-4}{21}\right)\)=\(\left(\frac{5.21-5}{21}\right).\left(\frac{21}{-25}\right)\)=\(\frac{5\left(21-1\right)}{\left(-5\right).5}=\frac{20}{-5}\)
=-4
\(a,\dfrac{15^3}{5^4}\)
\(=\dfrac{\left(3\cdot5\right)^3}{5^4}\)
\(=\dfrac{3^3\cdot5^3}{5^4}\)
\(=\dfrac{3^3}{5}\)
\(=\dfrac{27}{5}\)
\(---\)
\(b,\dfrac{21^3}{7^4}\)
\(=\dfrac{\left(3\cdot7\right)^3}{7^4}\)
\(=\dfrac{3^3\cdot7^3}{7^4}\)
\(=\dfrac{3^3}{7}\)
\(=\dfrac{27}{7}\)
\(---\)
\(c,\dfrac{6^6}{3^8}\)
\(=\dfrac{\left(2\cdot3\right)^6}{3^8}\)
\(=\dfrac{2^6\cdot3^6}{3^8}\)
\(=\dfrac{2^6}{3^2}\)
\(=\dfrac{64}{9}\)
#\(Toru\)