Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) 6x3 + 3x2 + 4x + 2
= ( 6x3 + 3x2 ) + ( 4x + 2 )
= 3x2( 2x + 1 ) + 2( 2x + 1 )
= ( 2x + 1 )( 3x2 + 2 )
=> ( 6x3 + 3x2 + 4x + 2 ) : ( 3x2 + 2 ) = 2x + 1
b) 2x3 - 26x - 24
= 2( x3 - 13x - 12 )
= 2( x3 + 4x2 - 4x2 + 3x - 16x - 12 )
= 2[ ( x3 + 4x2 + 3x ) - ( 4x2 + 16x + 12 ) ]
= 2[ x( x2 + 4x + 3 ) - 4( x2 + 4x + 3 ) ]
= 2( x2 + 4x + 3 )( x - 4 )
=> ( 2x3 - 26x - 24 ) : ( x2 + 4x + 3 ) = 2( x - 4 ) = 2x - 8
c) x3 - 7x + 6
= x3 - 3x2 + 3x2 + 2x - 9x - 6
= ( x3 - 3x2 + 2x ) + ( 3x2 - 9x + 6 )
= x( x2 - 3x + 2 ) + 3( x2 - 3x + 2 )
= ( x2 - 3x + 2 )( x + 3 )
=> ( x3 - 7x + 6 ) : ( x + 3 ) = x2 - 3x + 2
a,\(\left(6x^3+3x^2+4x+2\right)\div\left(3x^2+2\right)\)
\(=\left[3x^2\left(2x+1\right)+2\left(2x+1\right)\right]\div\left(3x^2+2\right)\)
\(=\left[\left(3x^2+2\right)\left(2x+1\right)\right]\div\left(3x^2+2\right)\)
\(=2x+1\)
a) Đề:............
= 6x4 - 15x3 - 12x2
b) Đề:...........
= x2 + 2x + 1 + x2 + 3x - 2x - 6 - 4x
= 2x2 - x - 5
Mk làm chi tiết từng bc một nên hơi dài
~ học tốt ~
\(\frac{x^3-4x^2+x+6}{x-2}\)
\(=\frac{x^3-2x^2-2x^2+x+6}{x-2}\)
\(=\frac{\left(x^3-2x^2\right)-\left(2x^2-x-6\right)}{x-2}\)
\(=\frac{x^2\left(x-2\right)-\left(2x^2-4x+3x-6\right)}{x-2}\)
\(=\frac{x^2\left(x-2\right)-[\left(2x^2-4x\right)+\left(3x-6\right)]}{x-2}\)
\(=\frac{x^2\left(x-2\right)-[2x\left(x-2\right)+3\left(x-2\right)]}{x-2}\)
\(=\frac{x^2\left(x-2\right)-\left(x-2\right)\left(2x+3\right)}{x-2}\)
\(=\frac{\left(x-2\right)\left(x^2-2x-3\right)}{x-2}\)
\(=\frac{\left(x-2\right)\left(x^2+x-3x-3\right)}{x-2}\)
\(=\frac{\left(x-2\right)[\left(x^2+x\right)-\left(3x-3\right)]}{x-2}\)
\(=\frac{\left(x-2\right)[x\left(x-1\right)-3\left(x-1\right)}{x-2}\)
\(=\frac{\left(x-2\right)\left(x-1\right)\left(x-3\right)}{x-2}\)
\(=\left(x-1\right)\left(x-3\right)\)
\(\frac{x^3-4x^2+x+6}{x-2}\)
\(=\frac{x^3-2x^2-2x^2+x+6}{x-2}\)
\(=\frac{x^2\left(x-2\right)-\left(x-2\right)\left(2x+3\right)}{x-2}\)
\(=\frac{\left(x-2\right)\left(x^2-2x-3\right)}{x-2}\)
\(=x^2-2x-3\)
@TrầnMinhPhong.
Đến đoạn này là được rồi .