K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

2 tháng 5 2021

giai giúp mình với

b: Để hàm số đồng biến thì 2-m>0

hay m<2

b: Để hàm số đồng biến thì 2-m>0

hay m<2

2 tháng 7 2023

a) ĐKXĐ : \(x\sqrt{x}-1\ge0\Leftrightarrow x\ge1\)

b) \(B=\left(\dfrac{2x+1}{x\sqrt{x}-1}-\dfrac{\sqrt{x}}{x+\sqrt{x}+1}\right).\left(\dfrac{1+x\sqrt{x}}{1+\sqrt{x}}-\sqrt{x}\right)\)

\(=\dfrac{2x+1-\sqrt{x}.\left(\sqrt{x}-1\right)}{\left(\sqrt{x}-1\right).\left(x+\sqrt{x}+1\right)}.\left(x-2\sqrt{x}+1\right)\)

\(=\dfrac{1}{\sqrt{x}-1}.\left(\sqrt{x}-1\right)^2=\sqrt{x}-1\)

c) Có : \(x=\dfrac{2-\sqrt{3}}{2}=\dfrac{4-2\sqrt{3}}{4}=\dfrac{\left(\sqrt{3}-1\right)^2}{4}\)

Khi đó B = \(\dfrac{\sqrt{3}-1}{2}-1=\dfrac{\sqrt{3}-3}{2}\)

2 tháng 7 2023

\(a,\) B có nghĩa \(\Leftrightarrow\left[{}\begin{matrix}x\ge0\\x\ne1\end{matrix}\right.\)

\(b,B=\left(\dfrac{2x+1}{x\sqrt{x}-1}-\dfrac{\sqrt{x}}{x+\sqrt{x}+1}\right)\left(\dfrac{1+x\sqrt{x}}{1+\sqrt{x}}-\sqrt{x}\right)\)

\(=\dfrac{2x+1-\sqrt{x}\left(\sqrt{x}-1\right)}{\left(\sqrt{x}-1\right)\left(x+\sqrt{x}+1\right)}.\dfrac{1+x\sqrt{x}-\sqrt{x}\left(1+\sqrt{x}\right)}{1+\sqrt{x}}\)

\(=\dfrac{2x+1-x+\sqrt{x}}{\left(\sqrt{x}-1\right)\left(x+\sqrt{x}+1\right)}.\dfrac{1+x\sqrt{x}-\sqrt{x}-x}{1+\sqrt{x}}\)

\(=\dfrac{x+\sqrt{x}+1}{\left(\sqrt{x}-1\right)\left(x+\sqrt{x}+1\right)}.\dfrac{\sqrt{x}\left(x-1\right)-\left(x-1\right)}{1+\sqrt{x}}\)

\(=\dfrac{\left(x-1\right)\left(\sqrt{x}-1\right)}{\left(\sqrt{x}-1\right)\left(\sqrt{x}+1\right)}\)

\(=\sqrt{x}-1\)

\(c,x=\dfrac{2-\sqrt{3}}{2}\Rightarrow B=\sqrt{\dfrac{2-\sqrt{3}}{2}}-1\)

\(=\dfrac{\sqrt{2}.\sqrt{2-\sqrt{3}}}{\sqrt{2}.\sqrt{2}}-\sqrt{2}\) (Nhân \(\sqrt{2}\) để khử căn dưới mẫu)

\(=\dfrac{\sqrt{4-2\sqrt{3}}-2\sqrt{2}}{2}\)

\(=\dfrac{\sqrt{\left(\sqrt{3}-1\right)^2}-2\sqrt{2}}{2}\)

\(=\dfrac{\left|\sqrt{3}-1\right|-2\sqrt{2}}{2}\)

\(=\dfrac{\sqrt{3}-1-2\sqrt{2}}{2}\)

Hàm số \(y=\sqrt{3-m}\left(x+5\right)\) là hàm số bậc nhất khi \(\sqrt{3-m}\ne0\)

\(\Leftrightarrow3-m\ne0\)

\(\Leftrightarrow m\ne3\)

Tọa độ giao điểm của hai đồ thị hàm số \(y=\dfrac{1}{2}x-2\) và \(y=\dfrac{3}{2}x-2\) là nghiệm của hệ phương trình:

\(\left\{{}\begin{matrix}\dfrac{1}{2}x-2=\dfrac{3}{2}x-2\\y=\dfrac{1}{2}x-2\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}\dfrac{1}{2}x-2-\dfrac{3}{2}x+2=0\\y=\dfrac{1}{2}x-2\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}-x=0\\y=\dfrac{1}{2}x-2\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=0\\y=\dfrac{1}{2}\cdot0-2=-2\end{matrix}\right.\)

Vậy: Hai đồ thị hàm số \(y=\dfrac{1}{2}x-2\) và \(y=\dfrac{3}{2}x-2\) có tọa độ giao điểm là (0;-2)

17 tháng 2 2021

\(y=\sqrt{3-m}.\left(x+5\right)\) là hàm số bậc nhất \(\Leftrightarrow\sqrt{3-m}\ne0\Leftrightarrow m\ne3\)

 

Lập PT hoành độ ta có:

\(\dfrac{1}{2}x-2=\dfrac{3}{2}x-2\)

\(\Leftrightarrow x=0\)

\(\Rightarrow y=\dfrac{1}{2}.0-2=-2\)

=> Tọa độ (0;-2)

3 tháng 1 2021

a, \(A=5\sqrt{\dfrac{1}{1}}+\dfrac{5}{2}\sqrt{20}+\sqrt{80}=5+5\sqrt{5}+4\sqrt{5}=5+9\sqrt{5}\)

b, Vì \(\sqrt{2}-1>0\Rightarrow\) Hàm số đồng biến

c, Hai đường thẳng đã cho song song khi \(\left\{{}\begin{matrix}m^2+2=6\\m\ne2\end{matrix}\right.\Leftrightarrow m=-2\)

19 tháng 10 2017

1. a) Để hàm số đồng biến thì m-1>0\(\Rightarrow\)m>1  b) Để hàm số nghịch biến m-1<0\(\Rightarrow\)m<1        2. a) Tự làm  b) Xét phương trình hoành độ -2x+1=2x\(\Rightarrow\)x=1/4\(\Rightarrow\)   y=1/2. Vậy giao điểm của d và d' có tọa độ (1/4; 1/2)              

19 tháng 10 2017

3 a)ĐKXĐ \(x\ge0\)\(x\ne1\)A=\(\frac{\sqrt{x}+1-\sqrt{x}+1-2\sqrt{x}}{2\left(\sqrt{x}-1\right)\left(\sqrt{x}+1\right)}\)=\(\frac{-2}{\sqrt{x}+1}\)  b)Khi x= \(6-2\sqrt{5}\)thì A=\(\frac{-2}{\sqrt{\left(\sqrt{5}-1\right)^2}+1}\)=\(\frac{2}{\sqrt{5}}\)