Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
A/\(\left(2x^3+y^2-7xy\right)4xy^2.\)
\(=8x^4y^2+4xy^4-28x^2y^3\)
B/\(\left(2x^3-x-1\right)\left(5x-2\right)\)
\(=10x^4-5x^2-5x-4x^3+2x+2\)
\(=10x^4-5x^3-3x-4x^3+2\)
C/\(\left(2x^2-3\right)\left(4x^4+6x^2+9\right)\)
\(=\left(2x^2-3\right)\left(2x+3\right)^2\)
D/\(\left(3x^2-2y\right)^3-\left(2x^2-y\right)^3\)
( Bài này áp dụng hằng đẳng thức là làm được ạ )
\(B=x^2-6x+y^2-2y+12=\left(x^2-6x+9\right)\left(y^2-2y+1\right)+2\)
\(B=\left(x-3\right)^2+\left(y-1\right)^2+2\text{ }\)
Ta thấy B lớn hơn hoặc bằng 2 suy ra GTNN của B là 2
Dấu = xảy ra khi x=3; y=1
\(C=2x^2-6x=\left(2x^2-6x+4,5\right)-4,5=2\left(x^2-3x+2,25\right)-4,5\)
\(C=2\left(x-1,5\right)^2-4,5\)
Ta thấy C luôn luôn lớn hơn hoặc bằng -4,5 nên GTNN của C là -4,5
Dấu = xảy ra khi x=1,5
Tối mình full cho còn giờ mình đi đá bóng đây
1) \(D=\frac{2016}{-4x^2+4x-5}\). Để D đạt giá trị nhỏ nhất suy ra \(-4x^2+4x-5\)đạt giá trị lớn nhất.
Ta có \(-4x^2+4x-5=-4x^2+4x-1-4=\left(-4x^2+4x-1\right)-4\)
\(-4\left(x^2-x+\frac{1}{4}\right)-4=-4\left(x-\frac{1}{2}\right)^2-4\).
Ta Thấy:\(-4\left(x-\frac{1}{2}\right)^2\) bé hơn hoặc bằng 0 nên \(-4\left(x-\frac{1}{2}\right)^2-4\)bé hơn hoặc bằng -4
nên ..... bạn tự kết luận
\(a,3x^3y^3-15x^2y^2=3x^2y^2\left(xy-5\right)\)
\(b,5x^3y^2-25x^2y^3+40xy^4\)
\(=5xy^2\left(x^2-5xy+8y^2\right)\)
\(c,-4x^3y^2+6x^2y^2-8x^4y^3\)
\(=-2x^2y^2\left(2x-3+4x^2y\right)\)
\(d,a^3x^2y-\frac{5}{2}a^3x^4+\frac{2}{3}a^4x^2y\)
\(=a^3x^2\left(y-\frac{5}{2}x^2+\frac{2}{3}ay\right)\)
\(e,a\left(x+1\right)-b\left(x+1\right)=\left(x+1\right)\left(a-b\right)\)
\(f,2x\left(x-5y\right)+8y\left(5y-x\right)\)
\(=2x\left(x-5y\right)-8y\left(x-5y\right)=\left(x-5y\right)\left(2x-8y\right)\)
\(g,a\left(x^2+1\right)+b\left(-1-x^2\right)-c\left(x^2+1\right)\)
\(=\left(x^2+1\right)\left(a-b-c\right)\)
\(h,9\left(x-y\right)^2-27\left(y-x\right)^3\)
\(=9\left(x-y\right)^2+27\left(x-y\right)^3\)
\(=9\left(x-y\right)^2\left(1+3x-3y\right)\)
a,3x3y3−15x2y2=3x2y2(xy−5)a,3x3y3−15x2y2=3x2y2(xy−5)
b,5x3y2−25x2y3+40xy4b,5x3y2−25x2y3+40xy4
=5xy2(x2−5xy+8y2)=5xy2(x2−5xy+8y2)
c,−4x3y2+6x2y2−8x4y3c,−4x3y2+6x2y2−8x4y3
=−2x2y2(2x−3+4x2y)=−2x2y2(2x−3+4x2y)
d,a3x2y−52a3x4+23a4x2yd,a3x2y−52a3x4+23a4x2y
=a3x2(y−52x2+23ay)=a3x2(y−52x2+23ay)
e,a(x+1)−b(x+1)=(x+1)(a−b)e,a(x+1)−b(x+1)=(x+1)(a−b)
f,2x(x−5y)+8y(5y−x)f,2x(x−5y)+8y(5y−x)
=2x(x−5y)−8y(x−5y)=(x−5y)(2x−8y)=2x(x−5y)−8y(x−5y)=(x−5y)(2x−8y)
g,a(x2+1)+b(−1−x2)−c(x2+1)g,a(x2+1)+b(−1−x2)−c(x2+1)
=(x2+1)(a−b−c)=(x2+1)(a−b−c)
h,9(x−y)2−27(y−x)3h,9(x−y)2−27(y−x)3
=9(x−y)2+27(x−y)3
P/s : Phá ngoặc ra là ok :
a )
\(\left[4x-2\left(x-3\right)\right].\left(-3x\right)\)
\(=\left[4x-2x+6\right]\left(-3x\right)\)
\(=-12x^2+6x^2-18x\)
b )
\(3\left[x-3\left(4-2x\right)+8\right]\)
\(=3\left[x-12+6x+8\right]\)
\(=3\left[7x-4\right]\)
\(=21x-12\)
c )
\(5\left(3x^2-4y^3\right)+9\left(2x^2-y^3\right)\)
\(=15x^2-20y^3+18x^2-9y^3\)
\(=33x^2-29y^3\)
d )
\(3x^2\left(2y-1\right)-2x^2\left(5y-3\right)\)
\(=6x^2y-3x^2-10x^2y+6x^2\)
\(=-4x^2y+3x^2\)
a, \(=12x^5+9x^3y^2-6x^2y^3-20x^4y-15x^2y^3-10xy^4-24x^3y^2-18xy^4+12y^5\)
(tự rút gọn cái :P)
b, \(8x^3+4x^2y-2xy^2-y^3\)
\(=4x^2\left(2x+y\right)-y^2\left(2x+y\right)=\left(2x+y\right)^2\left(2x-y\right)\)
\(4x^2y^2-4x^2-4xy-y^2=4x^2y^2-\left(2x+y\right)^2\)
\(=\left(2x+y+2xy\right)\left(2xy-2x+y\right)\)
Mấy cái còn lại nhân tung ra là được mà :))))
a: \(=\dfrac{27a^6b^3\cdot a^2b^6}{a^8b^8}=27b\)
b: \(=3y^2-5x^2y^3-2y^2+3x^2y^3\)
\(=y^2-2x^2y^3\)
c: \(=6x-y+2x^2+3y-2x^2+x\)
\(=7x+2y\)
d: \(=x-y+2y^2-6xy+\dfrac{10x^2}{y}\)
Thực hiện phép tính:
a,(2x3+y2−7xy).4xy2a,(2x3+y2−7xy).4xy2
=>2x3.4xy2+y2.4xy2-7xy.4xy2
=>8x4y2+4xy4-28x2y3
b,(2x3−x−1)(5x−2)
=>10x4-4x3-5x2-3x+2
c: =(2x^2-3)[(2x^2)^2+2x^2*3+3^2]
=8x^6-27
d:\(=\left(3x^2-2y-2x^2+y\right)\left(9x^4-12x^2y+4y^2+6x^4-3x^2y-4x^2y+2y^2+4x^4-4x^2y+y^2\right)\)
\(=\left(x^2-y\right)\left(19x^4-23x^2y+7y^2\right)\)
a: \(\left(2x-3\right)\left(4x^2+6x+9\right)-x\left(8x^2-1\right)\)
\(=8x^3-27-8x^3+x\)
=x-27
b: \(\left(4x^2y^5-6x^4y^4\right):\left(-2x^2y^4\right)+2y\)
\(=-\dfrac{4x^2y^5}{2x^2y^4}+\dfrac{6x^4y^4}{2x^2y^4}+2y\)
\(=-2y+3x^2+2y=3x^2\)