K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

13 tháng 12 2018

\(a)A=\frac{24\cdot47-23}{24+47-23}\cdot\frac{3+\frac{3}{7}+\frac{3}{11}+\frac{3}{1001}+\frac{3}{13}}{\frac{9}{1001}+\frac{9}{13}+\frac{9}{7}+\frac{9}{11}+9}\)

\(=\frac{(23+1)\cdot47-23}{24+47-23}\cdot\frac{3+\frac{3}{7}+\frac{3}{11}+\frac{3}{1001}+\frac{3}{13}}{\frac{9}{1001}+\frac{9}{13}+\frac{9}{7}+\frac{9}{11}+9}=\frac{47-23+24}{47-23+24}\cdot\frac{3(1+\frac{1}{7}+\frac{1}{11}+\frac{1}{1001}+\frac{1}{13})}{3(3+\frac{3}{1001}+\frac{3}{13}+\frac{3}{7}+\frac{3}{11})}\)

\(=\frac{1+\frac{1}{7}+\frac{1}{11}+\frac{1}{1001}+\frac{1}{13}}{3+\frac{3}{1001}+\frac{3}{13}+\frac{3}{7}+\frac{3}{11}}=\frac{1+\frac{1}{1001}+\frac{1}{13}+\frac{1}{7}+\frac{1}{11}}{3(1+\frac{1}{1001}+\frac{1}{13}+\frac{1}{7}+\frac{1}{11})}=\frac{1}{3}\)

\(b)\)\(\text{Đặt A = }1+2+2^2+2^3+...+2^{2012}\)

\(2A=2(1+2^2+2^3+...+2^{2012})\)

\(2A=2+2^2+2^3+...+2^{2013}\)

\(2A-A=(2+2^2+2^3+2^4+...+2^{2013})-(1+2+2^2+2^3+...+2^{2012})\)

\(\Rightarrow A=2^{2013}-1\)

\(\text{Quay lại bài toán,ta có :}\)

\(B=\frac{1+2+2^2+2^3+...+2^{2012}}{2^{2014}-2}=\frac{2^{2013}-1}{2^{2014}-2}=\frac{2^{2013}-1}{2(2^{2013}-1)}=\frac{1}{2}\)

4 tháng 3 2022

\(\dfrac{3+\dfrac{3}{7}-\dfrac{3}{11}+\dfrac{3}{1001}-\dfrac{3}{13}}{\dfrac{9}{1001}-\dfrac{9}{13}+\dfrac{9}{7}-\dfrac{9}{11}+9}\\ =\dfrac{3\left(1+\dfrac{1}{7}-\dfrac{1}{11}+\dfrac{1}{1001}-\dfrac{1}{13}\right)}{9\left(1+\dfrac{1}{7}-\dfrac{1}{11}+\dfrac{1}{1001}-\dfrac{1}{13}\right)}\\ =\dfrac{3}{9}\\ =\dfrac{1}{3}\)

bó tay luôn

3 tháng 3 2023

\(\dfrac{24\cdot47-23}{24+47\cdot23}\cdot\dfrac{3+\dfrac{3}{7}-\dfrac{3}{11}+\dfrac{3}{1001}-\dfrac{3}{13}}{\dfrac{9}{1001}-\dfrac{9}{13}+\dfrac{9}{7}-\dfrac{9}{11}+9}\\ =\dfrac{24\cdot\left(24+23\right)-23}{24+\left(24+23\right)\cdot23}\cdot\dfrac{3\left(1+\dfrac{1}{7}-\dfrac{1}{11}+\dfrac{1}{1001}-\dfrac{1}{13}\right)}{9\left(1+\dfrac{1}{7}-\dfrac{1}{11}+\dfrac{1}{1001}-\dfrac{1}{13}\right)}\\ =\dfrac{24\cdot24+24\cdot23-23\cdot1}{24+24\cdot23+23\cdot23}\cdot\dfrac{1}{3}\\ =\dfrac{23\left(24-1\right)+24\cdot24}{24\left(1+23\right)+23\cdot23}\cdot\dfrac{1}{3}=\dfrac{23\cdot23+24\cdot24}{24\cdot24+23\cdot23}\cdot\dfrac{1}{3}\\ =1\cdot\dfrac{1}{3}=\dfrac{1}{3}\)

22 tháng 3 2017

\(A=\frac{24.47-23}{24+47-23}.\frac{3+\frac{3}{7}-\frac{3}{11}+\frac{3}{1001}-\frac{3}{13}}{\frac{9}{1001}-\frac{9}{13}+\frac{9}{7}-\frac{9}{11}+9}\) 

\(A=\frac{1105}{28}.\)\(\frac{3+\frac{3}{7}-\frac{3}{11}+\frac{3}{1001}-\frac{3}{13}}{9+\frac{9}{7}-\frac{9}{11}+\frac{9}{1001}-\frac{9}{13}}\)

\(A=\frac{1105}{28}.\frac{3.\left(1+\frac{1}{7}-\frac{1}{11}+\frac{1}{1001}-\frac{1}{13}\right)}{9.\left(1+\frac{1}{7}-\frac{1}{11}+\frac{1}{1001}-\frac{1}{13}\right)}\)

\(A=\frac{1105}{28}.\frac{3}{9}\)

\(A=\frac{1105}{84}\)

b)\(M=\frac{1+2+2^2+2^3+...+2^{2012}}{2^{2014}-2}\)

Đặt \(A=1+2+2^2+2^3+...+2^{2012}\)

Suy ra \(2.A=2+2^2+2^3+2^4+...+2^{2013}\)

Khi đó \(2.A-A=2^{2013}-1\)hay \(A=2^{2013}-1\)

Do đó : \(M=\frac{A}{2^{2014}-2}=\frac{2^{2013}-1}{2^{2014}-2}=\frac{1}{2}\)

          Vậy \(M=\frac{1}{2}\)

9 tháng 5 2017

BẠN XEM LẠI CÁI ĐỀ XEM ĐÚNG KO

9 tháng 5 2017

\(\frac{11}{12}.\frac{3.\left(1+\frac{1}{7}-\frac{1}{11}+\frac{1}{1001}-\frac{1}{13}\right)}{9.\left(\frac{1}{1001}-\frac{1}{13}+\frac{1}{7}-\frac{1}{11}+1\right)}=\frac{11}{12}.\frac{1}{3}=\frac{11}{36}\)

10 tháng 1 2018

A=(24.47-23)/(24+47-23) . [3(1+1/7-1/11-1/13+1/1001)]/[9(1+1/7-1/11-1/13+1/1001)]

=1105/48 . 3/9 =1105/144