\(\dfrac{1}{2}\).\(2\dfrac{1}{3}\)<...">
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

18 tháng 6 2018

Giải:

a) \(1\dfrac{1}{2}.2\dfrac{1}{3}+1\dfrac{1}{3}.\dfrac{1}{2}\)

\(=\dfrac{3}{2}.\dfrac{7}{3}+\dfrac{4}{3}.\dfrac{1}{2}\)

\(=\dfrac{21}{6}+\dfrac{4}{6}\)

\(=\dfrac{1}{6}\left(21+4\right)\)

\(=\dfrac{25}{6}\)

b) \(\dfrac{1}{9}.\dfrac{2}{145}-4\dfrac{1}{3}.2\dfrac{2}{145}+\dfrac{2}{145}\)

\(=\dfrac{1}{9}.\dfrac{2}{145}-\dfrac{13}{3}.\dfrac{292}{145}+\dfrac{2}{145}\)

\(=\dfrac{2}{145}\left(\dfrac{1}{9}-\dfrac{13}{3}.146+1\right)\)

\(=\dfrac{2}{145}\left(-\dfrac{5684}{9}\right)\)

\(=-\dfrac{392}{45}\)

Vậy ...

19 tháng 6 2018

Giải:

a) \(1\dfrac{1}{2}.2\dfrac{1}{3}+1\dfrac{1}{3}.\dfrac{1}{2}\)

\(=\dfrac{3}{2}.\dfrac{7}{3}+\dfrac{4}{3}.\dfrac{1}{2}\)

\(=\dfrac{21}{6}+\dfrac{4}{6}\)

\(=\dfrac{1}{6}\left(21+4\right)\)

\(=\dfrac{1}{6}.25=\dfrac{25}{6}\)

b) \(\dfrac{1}{9}.\dfrac{2}{145}-4\dfrac{1}{3}.\dfrac{2}{145}+\dfrac{2}{145}\)

\(=\dfrac{1}{9}.\dfrac{2}{145}-\dfrac{13}{3}.\dfrac{2}{145}+\dfrac{2}{145}\)

\(=\dfrac{2}{145}\left(\dfrac{1}{9}-\dfrac{13}{3}+1\right)\)

\(=\dfrac{2}{145}\left(-\dfrac{29}{9}\right)\)

\(=-\dfrac{2}{45}\)

Vậy ...

19 tháng 6 2018

Giải:

1) \(\dfrac{-1}{12}-\left(2\dfrac{5}{8}-\dfrac{1}{3}\right)\)

\(=\dfrac{-1}{12}-\left(\dfrac{21}{8}-\dfrac{1}{3}\right)\)

\(=\dfrac{-1}{12}-\dfrac{55}{24}\)

\(=\dfrac{-19}{8}\)

2) \(-1,75-\left(\dfrac{-1}{9}-2\dfrac{1}{18}\right)\)

\(=-\dfrac{7}{4}+\dfrac{1}{9}+2\dfrac{1}{18}\)

\(=-\dfrac{7}{4}+\dfrac{1}{9}+\dfrac{37}{18}\)

\(=\dfrac{5}{12}\)

3) \(-\dfrac{5}{6}-\left(-\dfrac{3}{8}+\dfrac{1}{10}\right)\)

\(=-\dfrac{5}{6}+\dfrac{3}{8}-\dfrac{1}{10}\)

\(=-\dfrac{67}{120}\)

4) \(\dfrac{2}{5}+\left(-\dfrac{4}{3}\right)+\left(-\dfrac{1}{2}\right)\)

\(=\dfrac{2}{5}-\dfrac{4}{3}-\dfrac{1}{2}\)

\(=-\dfrac{43}{30}\)

5) \(\dfrac{3}{12}-\left(\dfrac{6}{15}-\dfrac{3}{10}\right)\)

\(=\dfrac{3}{12}-\dfrac{6}{15}+\dfrac{3}{10}\)

\(=\dfrac{3}{20}\)

6) \(\left(8\dfrac{5}{11}+3\dfrac{5}{8}\right)-3\dfrac{5}{11}\)

\(=8\dfrac{5}{11}+3\dfrac{5}{8}-3\dfrac{5}{11}\)

\(=8+\dfrac{5}{11}+3+\dfrac{5}{8}-3-\dfrac{5}{11}\)

\(=8+\dfrac{5}{8}\)

\(=\dfrac{69}{8}\)

7) \(-\dfrac{1}{4}.13\dfrac{9}{11}-0,25.6\dfrac{2}{11}\)

\(=-\dfrac{1}{4}.13\dfrac{9}{11}-\dfrac{1}{4}.6\dfrac{2}{11}\)

\(=-\dfrac{1}{4}\left(13\dfrac{9}{11}+6\dfrac{2}{11}\right)\)

\(=-\dfrac{1}{4}\left(13+\dfrac{9}{11}+6+\dfrac{2}{11}\right)\)

\(=-\dfrac{1}{4}\left(13+6+1\right)\)

\(=-\dfrac{1}{4}.20=-5\)

8) \(\dfrac{4}{9}:\left(-\dfrac{1}{7}\right)+6\dfrac{5}{9}:\left(-\dfrac{1}{7}\right)\)

\(=\dfrac{4}{9}\left(-7\right)+6\dfrac{5}{9}\left(-7\right)\)

\(=-7\left(\dfrac{4}{9}+6\dfrac{5}{9}\right)\)

\(=-7\left(\dfrac{4}{9}+6+\dfrac{5}{9}\right)\)

\(=-7\left(6+1\right)\)

\(=-7.7=-49\)

Vậy ...

1 tháng 5 2017

ai giải giúp mk vs đg cần gấp

a: \(=\dfrac{x^2+2x+1-x^2+2x-1}{\left(x-1\right)\left(x+1\right)}:\left(\dfrac{1}{x+1}+\dfrac{x}{x-1}+\dfrac{2}{\left(x-1\right)\left(x+1\right)}\right)\)

\(=\dfrac{4x}{\left(x-1\right)\left(x+1\right)}:\dfrac{x-1+x^2+x+2}{\left(x-1\right)\left(x+1\right)}\)

\(=\dfrac{4x}{\left(x-1\right)\left(x+1\right)}\cdot\dfrac{\left(x-1\right)\left(x+1\right)}{x^2+2x+1}=\dfrac{4x}{x^2+2x+1}\)

b: \(=\dfrac{x+2}{-\left(x-2\right)}\cdot\dfrac{\left(x-2\right)^2}{4x^2}\cdot\left(\dfrac{2}{2-x}-\dfrac{4}{\left(x+2\right)\left(x^2-2x+4\right)}\cdot\dfrac{x^2-2x+4}{2-x}\right)\)

\(=\dfrac{-\left(x+2\right)\left(x-2\right)}{4x^2}\cdot\left(\dfrac{2}{2-x}-\dfrac{4}{\left(x+2\right)\left(2-x\right)}\right)\)

\(=\dfrac{-\left(x+2\right)\left(x-2\right)}{4x^2}\cdot\dfrac{2x+4-4}{\left(2-x\right)\left(x+2\right)}\)

\(=\dfrac{2x}{4x^2}=\dfrac{1}{2x}\)

1, Thực hiện phép tính : a, \(\dfrac{2x+4}{10}\) + \(\dfrac{2-x}{15}\) b, \(\dfrac{3x}{10}\) + \(\dfrac{2x-1}{15}\) + \(\dfrac{2-x}{20}\) c, \(\dfrac{x+1}{2x-2}\) + \(\dfrac{x^2+3}{2-2x^2}\) d, \(\dfrac{1-2x}{2x}\) + \(\dfrac{2x}{2x-1}\) + \(\dfrac{1}{2x-4x^2}\) e, \(\dfrac{x}{xy-y^2}\) + \(\dfrac{2x-y}{xy-x^2}\) f, \(\dfrac{x^2}{x^2-4x}\) + \(\dfrac{6}{6-3x}\) +\(\dfrac{1}{x+2}\) g, \(\dfrac{2x^2-10xy}{2xy}\) + \(\dfrac{5y-x}{y}\) + \(\dfrac{x+2y}{x}\) h, \(\dfrac{2}{x+y}\)...
Đọc tiếp

1, Thực hiện phép tính :

a, \(\dfrac{2x+4}{10}\) + \(\dfrac{2-x}{15}\)

b, \(\dfrac{3x}{10}\) + \(\dfrac{2x-1}{15}\) + \(\dfrac{2-x}{20}\)

c, \(\dfrac{x+1}{2x-2}\) + \(\dfrac{x^2+3}{2-2x^2}\)

d, \(\dfrac{1-2x}{2x}\) + \(\dfrac{2x}{2x-1}\) + \(\dfrac{1}{2x-4x^2}\)

e, \(\dfrac{x}{xy-y^2}\) + \(\dfrac{2x-y}{xy-x^2}\)

f, \(\dfrac{x^2}{x^2-4x}\) + \(\dfrac{6}{6-3x}\) +\(\dfrac{1}{x+2}\)

g, \(\dfrac{2x^2-10xy}{2xy}\) + \(\dfrac{5y-x}{y}\) + \(\dfrac{x+2y}{x}\)

h, \(\dfrac{2}{x+y}\) +\(\dfrac{1}{x-y}\) + \(\dfrac{-3x}{x^2-y^2}\)

i, x+y+ \(\dfrac{x^2+y^2}{x+y}\)

2, Thực hiện phép tính :

a, \(\dfrac{2x}{x^2+2xy}\) + \(\dfrac{y}{xy-2y^2}\)+ \(\dfrac{4}{x^2-4y^2}\)

b, \(\dfrac{1}{x-y}\) + \(\dfrac{3xy}{y^3-x^3}\) + \(\dfrac{x-y}{x^2+xy+y^2}\)

c, \(\dfrac{2x+y}{2x^2-xy}\) + \(\dfrac{16x}{y^2-4x^2}\) + \(\dfrac{2x-y}{2x^2+xy}\)

d, \(\dfrac{1}{1-x}\) +\(\dfrac{1}{1+x}\) + \(\dfrac{2}{1+x^2}\) + \(\dfrac{4}{1+x^4}\) + \(\dfrac{8}{1+x^8}\)+ \(\dfrac{16}{1+x^{16}}\)

1
13 tháng 11 2017

Bài 2 .

a) \(\dfrac{2x}{x^2+2xy}+\dfrac{y}{xy-2y^2}+\dfrac{4}{x^2-4y^2}\)

\(=\dfrac{2x}{x\left(x+2y\right)}+\dfrac{y}{y\left(x-2y\right)}+\dfrac{4}{\left(x-2y\right)\left(x+2y\right)}\)

\(=\dfrac{2xy\left(x-2y\right)+xy\left(x+2y\right)+4xy}{xy\left(x+2y\right)\left(x-2y\right)}\)

\(=\dfrac{2x^2y-2xy^2+x^2y+2xy^2+4xy}{xy\left(x+2y\right)\left(x-2y\right)}\)

\(=\dfrac{3x^2y+4xy}{xy\left(x+2y\right)\left(x-2y\right)}\)

b) Sai đề hay sao ý

c) \(\dfrac{2x+y}{2x^2-xy}+\dfrac{16x}{y^2-4x^2}+\dfrac{2x-y}{2x^2+xy}\)

\(=\dfrac{2x+y}{x\left(2x-y\right)}+\dfrac{-16x}{\left(2x-y\right)\left(2x+y\right)}+\dfrac{2x-y}{x\left(2x+y\right)}\)

\(=\dfrac{\left(2x+y\right)^2-16x^2+\left(2x-y\right)^2}{x\left(2x-y\right)\left(2x+y\right)}\)

\(=\dfrac{4x^2+4xy+y^2-16x^2+4x^2-4xy+y^2}{x\left(2x-y\right)\left(2x+y\right)}\)

\(=\dfrac{-8x^2}{x\left(2x-y\right)\left(2x+y\right)}\)

d) \(\dfrac{1}{1-x}+\dfrac{1}{1+x}+\dfrac{2}{1+x^2}+\dfrac{4}{1+x^4}+\dfrac{8}{1+x^8}+\dfrac{16}{1+x^{16}}\)

\(=\dfrac{2}{1-x^2}+\dfrac{2}{1+x^2}+\dfrac{4}{1+x^4}+\dfrac{8}{1+x^8}+\dfrac{16}{1+x^{16}}\)

\(=\dfrac{4}{1-x^4}+\dfrac{4}{1+x^4}+\dfrac{8}{1+x^8}+\dfrac{16}{1+x^{16}}\)

.....

\(=\dfrac{16}{1-x^{16}}+\dfrac{16}{1+x^{16}}\)

\(=\dfrac{32}{1-x^{32}}\)

28 tháng 7 2017

Đặt \(B=\dfrac{1}{2}+\dfrac{1}{3}+...+\dfrac{1}{n}\)

Đặt \(A=\dfrac{n-1}{1}+\dfrac{n-2}{2}+...+\dfrac{n-\left(n-2\right)}{n-2}+\dfrac{n-\left(n-1\right)}{n-1}\)

\(=\dfrac{n}{1}+\dfrac{n}{2}+...+\dfrac{n}{n-2}+\dfrac{n}{n-1}-1-1-...-1\)

\(=n+\dfrac{n}{2}+\dfrac{n}{3}+...+\dfrac{n}{n-1}-\left(n-1\right)\)

\(=\dfrac{n}{2}+\dfrac{n}{3}+...+\dfrac{n}{n-1}+\dfrac{n}{n}=n\left(\dfrac{1}{2}+\dfrac{1}{3}+...+\dfrac{1}{2}\right)=n.B\)

\(A:B=n\)

14 tháng 12 2018

a) \(\dfrac{x}{x-3}+\dfrac{9-6x}{x^2-3x}=\dfrac{x^2}{x\left(x-3\right)}+\dfrac{9-6x}{x\left(x-3\right)}=\dfrac{x^2-6x+9}{x\left(x-3\right)}=\dfrac{\left(x-3\right)^2}{x\left(x-3\right)}=\dfrac{x-3}{x}\)

14 tháng 12 2018

thanks

1 tháng 12 2017

a) \(\dfrac{2x}{x^2+2xy}+\dfrac{y}{xy-2y^2}+\dfrac{4}{x^2-4y^2}\)

\(=\dfrac{2x}{x\left(x+2y\right)}+\dfrac{y}{y\left(x-2y\right)}+\dfrac{4}{\left(x-2y\right)\left(x+2y\right)}\) MTC: \(xy\left(x-2y\right)\left(x+2y\right)\)

\(=\dfrac{2x.y\left(x-2y\right)}{xy\left(x+2y\right)\left(x-2y\right)}+\dfrac{y.x\left(x+2y\right)}{xy\left(x-2y\right)\left(x+2y\right)}+\dfrac{4.xy}{xy\left(x-2y\right)\left(x+2y\right)}\)

\(=\dfrac{2xy\left(x-2y\right)+xy\left(x+2y\right)+4xy}{xy\left(x+2y\right)\left(x-2y\right)}\)

\(=\dfrac{2x^2y-4xy^2+x^2y+2xy^2+4xy}{xy\left(x+2y\right)\left(x-2y\right)}\)

\(=\dfrac{3x^2y-2xy^2+4xy}{xy\left(x+2y\right)\left(x-2y\right)}\)

b) \(\dfrac{1}{x-y}+\dfrac{3xy}{y^3-x^3}+\dfrac{x-y}{x^2+xy+y^2}\)

\(=\dfrac{1}{x-y}-\dfrac{3xy}{x^3-y^3}+\dfrac{x-y}{x^2+xy+y^2}\)

\(=\dfrac{1}{x-y}-\dfrac{3xy}{\left(x-y\right)\left(x^2+xy+y^2\right)}+\dfrac{x-y}{x^2+xy+y^2}\) MTC: \(\left(x-y\right)\left(x^2+xy+y^2\right)\)

\(=\dfrac{x^2+xy+y^2}{\left(x-y\right)\left(x^2+xy+y^2\right)}-\dfrac{3xy}{\left(x-y\right)\left(x^2+xy+y^2\right)}+\dfrac{\left(x-y\right)\left(x-y\right)}{\left(x-y\right)\left(x^2+xy+y^2\right)}\)

\(=\dfrac{\left(x^2+xy+y^2\right)-3xy+\left(x-y\right)^2}{\left(x-y\right)\left(x^2+xy+y^2\right)}\)

\(=\dfrac{x^2+xy+y^2-3xy+x^2-2xy+y^2}{\left(x-y\right)\left(x^2+xy+y^2\right)}\)

\(=\dfrac{2x^2-4xy+2y^2}{\left(x-y\right)\left(x^2+xy+y^2\right)}\)

\(=\dfrac{2\left(x^2-2xy+y^2\right)}{\left(x-y\right)\left(x^2+xy+y^2\right)}\)

\(=\dfrac{2\left(x-y\right)^2}{\left(x-y\right)\left(x^2+xy+y^2\right)}\)

\(=\dfrac{2\left(x-y\right)}{x^2+xy+y^2}\)