K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

28 tháng 6 2020

Bài làm:

\(\frac{3}{200}-\frac{3}{110}-\frac{3}{90}-\frac{3}{72}-\frac{3}{56}-...-\frac{3}{2}\)

\(=\frac{3}{200}-3\left(\frac{1}{2}+\frac{1}{6}+\frac{1}{12}+\frac{1}{20}+...+\frac{1}{110}\right)\)

\(=\frac{3}{200}-3\left(\frac{1}{1.2}+\frac{1}{2.3}+\frac{1}{3.4}+\frac{1}{4.5}+...+\frac{1}{10.11}\right)\)

\(=\frac{3}{200}-3\left(1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+\frac{1}{4}-\frac{1}{5}+...+\frac{1}{10}-\frac{1}{11}\right)\)

\(=\frac{3}{200}-3\left(1-\frac{1}{11}\right)\)

\(=\frac{3}{200}-\frac{30}{11}=-\frac{5967}{2200}\)

Học tốt!!!!

28 tháng 6 2020

We bear're bears!

:)

24 tháng 7 2018

\(-\frac{3}{20}+\frac{-3}{30}+\frac{-3}{42}+\frac{-3}{56}+\frac{-3}{72}+\frac{-3}{90}\)

\(=-3\left(\frac{1}{20}+\frac{1}{30}+\frac{1}{42}+\frac{1}{56}+\frac{1}{72}+\frac{1}{90}\right)\)

\(=-3\left(\frac{1}{4.5}+\frac{1}{5.6}+\frac{1}{6.7}+\frac{1}{7.8}+\frac{1}{8.9}+\frac{1}{9.10}\right)\)

\(=-3\left(\frac{1}{4}-\frac{1}{5}+\frac{1}{5}-\frac{1}{6}+...+\frac{1}{9}-\frac{1}{10}\right)\)

\(=-3\left(\frac{1}{4}-\frac{1}{10}\right)=-\frac{9}{20}\)

24 tháng 7 2018

\(\frac{-3}{20}+\frac{-3}{30}+\frac{-3}{42}+\frac{-3}{56}+\frac{-3}{72}+\frac{-3}{90}\)

\(=-3\left(\frac{1}{20}+\frac{1}{30}+\frac{1}{42}+\frac{1}{56}+\frac{1}{72}+\frac{1}{90}\right)\)

\(=-3\left(\frac{1}{4\cdot5}+\frac{1}{5\cdot6}+\frac{1}{6\cdot7}+...+\frac{1}{9\cdot10}\right)\)

\(=-3\left(\frac{1}{4}-\frac{1}{5}+\frac{1}{5}-\frac{1}{6}+...+\frac{1}{9}-\frac{1}{10}\right)\)

\(=-3\left(\frac{1}{4}-\frac{1}{10}\right)\)

\(=-3\cdot\frac{3}{20}\)

\(=\frac{-9}{20}\)

19 tháng 6 2018

Giải:

\(\dfrac{1}{3}-\dfrac{1}{12}-\dfrac{1}{20}-...-\dfrac{1}{90}-\dfrac{1}{110}=x-\dfrac{5}{13}\)

\(\Leftrightarrow\dfrac{1}{1.3}-\dfrac{1}{3.4}-\dfrac{1}{4.5}-...-\dfrac{1}{9.10}-\dfrac{1}{10.11}=x-\dfrac{5}{13}\)

\(\Leftrightarrow\dfrac{-1}{2}\left(\dfrac{1}{1}-\dfrac{1}{3}+\dfrac{1}{3}-\dfrac{1}{4}+\dfrac{1}{4}-\dfrac{1}{5}+...+\dfrac{1}{9}-\dfrac{1}{10}+\dfrac{1}{10}-\dfrac{1}{11}\right)=x-\dfrac{5}{13}\)

\(\Leftrightarrow\dfrac{-1}{2}\left(\dfrac{1}{1}-\dfrac{1}{11}\right)=x-\dfrac{5}{13}\)

\(\Leftrightarrow\dfrac{-1}{2}.\dfrac{10}{11}=x-\dfrac{5}{13}\)

\(\Leftrightarrow\dfrac{-5}{11}=x-\dfrac{5}{13}\)

\(\Leftrightarrow\dfrac{-5}{11}+\dfrac{5}{13}=x\)

\(\Leftrightarrow x=\dfrac{-10}{143}\)

Vậy ...

19 tháng 6 2018

Giải đẳng cấp nhỉ @Hắc Hường

9 tháng 2 2021

Ta đặt A=\(-\left(\dfrac{1}{2}+\dfrac{1}{6}+\dfrac{1}{12}+\dfrac{1}{20}+\dfrac{1}{30}+\dfrac{1}{42}+\dfrac{1}{56}+\dfrac{1}{72}+\dfrac{1}{90}\right)\)

\(\Rightarrow A=-\left(\dfrac{1}{1\cdot2}+\dfrac{1}{2\cdot3}+\dfrac{1}{3\cdot4}+\dfrac{1}{4\cdot5}+\dfrac{1}{5\cdot6}+\dfrac{1}{6\cdot7}+\dfrac{1}{7\cdot8}+\dfrac{1}{8\cdot9}+\dfrac{1}{9\cdot10}\right)\)\(-\left(1-\dfrac{1}{2}+\dfrac{1}{2}-\dfrac{1}{3}+\dfrac{1}{3}-\dfrac{1}{4}+...+\dfrac{1}{8}-\dfrac{1}{9}+\dfrac{1}{9}-\dfrac{1}{10}\right)\) 

= - \(\left(1-\dfrac{1}{10}\right)=-\left(\dfrac{10-1}{10}\right)=-\dfrac{9}{10}\)

Ta có: \(-\dfrac{1}{90}-\dfrac{1}{72}-\dfrac{1}{56}-\dfrac{1}{42}-\dfrac{1}{30}-\dfrac{1}{20}-\dfrac{1}{12}-\dfrac{1}{6}-\dfrac{1}{2}\)

\(=-\left(\dfrac{1}{90}+\dfrac{1}{72}+\dfrac{1}{56}+\dfrac{1}{42}+\dfrac{1}{30}+\dfrac{1}{20}+\dfrac{1}{12}+\dfrac{1}{6}+\dfrac{1}{2}\right)\)

\(=-\left(\dfrac{1}{9}-\dfrac{1}{10}+\dfrac{1}{8}-\dfrac{1}{9}+\dfrac{1}{7}-\dfrac{1}{8}+\dfrac{1}{6}-\dfrac{1}{7}+\dfrac{1}{5}-\dfrac{1}{6}+\dfrac{1}{4}-\dfrac{1}{5}+\dfrac{1}{3}-\dfrac{1}{4}+\dfrac{1}{2}-\dfrac{1}{3}+\dfrac{1}{2}\right)\)

\(=-\left(-\dfrac{1}{10}+1\right)\)

\(=-\left(1-\dfrac{1}{10}\right)\)

\(=-\left(\dfrac{10}{10}-\dfrac{1}{10}\right)=-\dfrac{9}{10}\)

18 tháng 7 2017

\(\frac{1}{3}-\frac{1}{12}-\frac{1}{20}-\frac{1}{30}-\frac{1}{42}-\frac{1}{56}-\frac{1}{72}-\frac{1}{90}-\frac{1}{110}=x-\frac{5}{13}\)

\(\frac{1}{3}-\left(\frac{1}{12}+\frac{1}{20}+\frac{1}{30}+\frac{1}{42}+\frac{1}{56}+\frac{1}{72}+\frac{1}{90}+\frac{1}{110}\right)=x-\frac{5}{13}\)

\(\frac{1}{3}-\left(\frac{1}{3.4}+\frac{1}{4.5}+\frac{1}{5.6}+\frac{1}{6.7}+\frac{1}{7.8}+\frac{1}{8.9}+\frac{1}{9.10}+\frac{1}{10.11}\right)=x-\frac{5}{13}\)

\(\frac{1}{3}-\left(\frac{1}{3}-\frac{1}{4}+\frac{1}{4}-\frac{1}{5}+\frac{1}{5}-\frac{1}{6}+\frac{1}{6}-\frac{1}{7}+\frac{1}{7}-\frac{1}{8}+\frac{1}{8}-\frac{1}{9}+\frac{1}{9}-\frac{1}{10}+\frac{1}{10}-\frac{1}{11}\right)=x-\frac{5}{13}\)

\(\frac{1}{3}-\left(\frac{1}{3}-\frac{1}{11}\right)=x-\frac{5}{13}\)

\(\frac{1}{3}-\frac{1}{3}+\frac{1}{11}=x-\frac{5}{13}\)

\(\frac{1}{11}=x-\frac{5}{13}\)

\(x=\frac{1}{11}+\frac{5}{13}\)

\(x=\frac{68}{143}\)