K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

12 tháng 10 2021

\(\sqrt{x^2-2x+4}+\sqrt{x^2+5}=9-2x\left(đk:x\le\dfrac{9}{2}\right)\)

\(\Leftrightarrow x^2-2x+4+x^2+5+2\sqrt{\left(x^2-2x+4\right)\left(x^2+5\right)}=81-36x+4x^2\)

\(\Leftrightarrow2\sqrt{\left(x^2-2x+4\right)\left(x^2+5\right)}=2x^2-34x+72\)

\(\Leftrightarrow4\left(x^2-2x+4\right)\left(x^2+5\right)=4x^4+1156x^2+5184-136x^3+288x^2-4896x\)

\(\Leftrightarrow4x^4-8x^3+36x^2-40x+80=4x^4-136x^3+1444x^2-4896x+5184\)

\(\Leftrightarrow128x^3-1408x^2+4856x-5104=0\)

\(\Leftrightarrow128x^2\left(x-2\right)-1152x\left(x-2\right)+2552\left(x-2\right)=0\)

\(\Leftrightarrow\left(x-2\right)\left(128x^2-1152x+2552\right)=0\)

\(\Leftrightarrow x=2\left(tm\right)\)(do \(128x^2-1152x+2552>0\))

12 tháng 10 2021

cảm mơn bn ạ

24 tháng 10 2021

\(=\dfrac{\sqrt{5}-2}{5-4}-\sqrt{\left(\sqrt{5}+2\right)^2}=\sqrt{5}-2-\sqrt{5}-2=-4\)

29 tháng 6 2018

\(\sqrt{4-\sqrt{9+4\sqrt{2}}}=\sqrt{4-\sqrt{1+2.2.\sqrt{2}+\left(2\sqrt{2}\right)^2}}\)

                                            \(=\sqrt{4-\sqrt{\left(1+2\sqrt{2}\right)^2}}\)

                                              \(=\sqrt{4-\left|1+2\sqrt{2}\right|}=\sqrt{4-1-2\sqrt{2}}=\sqrt{3-2\sqrt{2}}\)

                                                \(=\sqrt{1-2.\sqrt{2}.1+\left(\sqrt{2}\right)^2}=\sqrt{\left(1-\sqrt{2}\right)^2}=\left|1-\sqrt{2}\right|=\sqrt{2}-1\)

Vậy ....

AH
Akai Haruma
Giáo viên
26 tháng 8 2023

Lời giải:
a.

\(=\sqrt{5+2.2\sqrt{5}+2^2}-\sqrt{5-2.2\sqrt{5}+2^2}\)

$=\sqrt{(\sqrt{5}+2)^2}-\sqrt{(\sqrt{5}-2)^2}$

$=|\sqrt{5}+2|-|\sqrt{5}-2|=(\sqrt{5}+2)-(\sqrt{5}-2)=4$

b.

$=\sqrt{3-2.3\sqrt{3}+3^2}+\sqrt{3+2.3.\sqrt{3}+3^2}$

$=\sqrt{(\sqrt{3}-3)^2}+\sqrt{(\sqrt{3}+3)^2}$

$=|\sqrt{3}-3|+|\sqrt{3}+3|$

$=(3-\sqrt{3})+(\sqrt{3}+3)=6$

c.

$=\sqrt{2+2.3\sqrt{2}+3^2}-\sqrt{2-2.3\sqrt{2}+3^2}$

$=\sqrt{(\sqrt{2}+3)^2}-\sqrt{(\sqrt{2}-3)^2}$
$=|\sqrt{2}+3|-|\sqrt{2}-3|$

$=(\sqrt{2}+3)-(3-\sqrt{2})=2\sqrt{2}$

a) \(\sqrt{24+8\sqrt{5}}+\sqrt{9-4\sqrt{5}}\)

\(=2\sqrt{5}+2+\sqrt{5}-2\)

\(=3\sqrt{5}\)

b) \(\sqrt{17-12\sqrt{2}}+\sqrt{9+4\sqrt{2}}\)

\(=3-2\sqrt{2}+2\sqrt{2}-1\)

=2

c) \(\sqrt{6-4\sqrt{2}}+\sqrt{22-12\sqrt{2}}\)

\(=2-\sqrt{2}+3\sqrt{2}-2\)

\(=2\sqrt{2}\)

23 tháng 6 2017

\(\sqrt{13+30\sqrt{2+\sqrt{9+4\sqrt{2}}}}=\sqrt{13+30\sqrt{3+2\sqrt{2}}}=\sqrt{13+30\left(\sqrt{2}+1\right)}\)

\(=\sqrt{43+30\sqrt{2}}=5+3\sqrt{2}\)

21 tháng 5 2023

a)

\(M=\sqrt{9+4\sqrt{5}}-\sqrt{9-4\sqrt{5}}\)

\(=\sqrt{4+4\sqrt{5}+5}-\sqrt{4-4\sqrt{5}+5}\)

\(=\sqrt{\left(2+\sqrt{5}\right)^2}-\sqrt{\left(2-\sqrt{5}\right)^2}\)

\(=\left|2+\sqrt{5}\right|-\left|2-\sqrt{5}\right|\)

\(=2+\sqrt{5}-\left(\sqrt{5}-2\right)\) (vì \(2+2\sqrt{5}>0;2-\sqrt{5}< 0\) )

\(=2+\sqrt{5}-\sqrt{5}+2\\ =4\)

b)

\(N=\sqrt{8-2\sqrt{7}}-\sqrt{8+2\sqrt{7}}\)

\(=\sqrt{7-2\sqrt{7}+1}-\sqrt{7+2\sqrt{7}+1}\)

\(=\sqrt{\left(\sqrt{7}-1\right)^2}-\sqrt{\left(\sqrt{7}+1\right)^2}\)

\(=\left|\sqrt{7}-1\right|-\left|\sqrt{7}+1\right|\)

\(=\sqrt{7}-1-\left(\sqrt{7}+1\right)\) (vì \(\sqrt{7}-1>0;\sqrt{7}+1>0\) )

\(=\sqrt{7}-1-\sqrt{7}-1\\ =-2\)

Ta có: \(\sqrt{12}+2\sqrt{27}+3\sqrt{75}-9\sqrt{48}\)

\(=2\sqrt{3}+6\sqrt{3}+15\sqrt{3}-36\sqrt{3}\)

\(=-13\sqrt{3}\)

22 tháng 8 2021

\(\sqrt{12}+2\sqrt{27}+3\sqrt{75}-9\sqrt{48}\\ =2\sqrt{3}+6\sqrt{3}+15\sqrt{3}-36\sqrt{3}=-13\sqrt{3}\)

6 tháng 7 2017

a,\(\sqrt{24+8\sqrt{5}}+\sqrt{9-4\sqrt{5}}=\sqrt{2^2+2\cdot2\cdot\left(2\sqrt{5}\right)+\left(2\sqrt{5}\right)^2}\) \(+\sqrt{\left(\sqrt{5}\right)^2-2\cdot2\sqrt{5}+2^2}=\sqrt{\left(2+2\sqrt{5}\right)^2}+\sqrt{\left(\sqrt{5}-2\right)^2}\)=\(2+2\sqrt{5}+\sqrt{5}-2=3\sqrt{5}\) 

b,\(\sqrt{\left(3-2\sqrt{2}\right)^2}+\sqrt{\left(2\sqrt{2}+1\right)^2}=3-2\sqrt{2}+2\sqrt{2}+1=4\)

c,\(\sqrt{\left(2-\sqrt{2}\right)^2}+\sqrt{\left(3\sqrt{2}-2\right)^2}=2-\sqrt{2}+3\sqrt{2}-2=2\sqrt{2}\)

6 tháng 7 2017

câu b với câu c giải thích ra dùm e đc kh ạ?