Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Ta có :
\(6^{300}+6^{299}+6^{298}\)
\(=6^{298}\times6^2+6^{298}\times6+6^{298}\)
\(=6^{298}\times\left(6^2+6+1\right)\)
\(=6^{298}\times43\)
Vậy \(6^{300}+6^{299}+6^{298}⋮43\)
_Chúc bạn học tốt_
5299<5300=(53)100=125100
=>5299<125100
3501>3500=(35)100=243100
=>3501>243100
mà 125100<243100 nên:
5299<125100<243100<3501
vậy 5299<3501
5^299 < 5^300 = (5^2)^150 = 25^150
3^501 = (3^3)^167 = 27^167
=> 27^167 > 25^150 => 5^299 < 3^501
a) 520<330<334
520=(52)10=2510
330=(33)10=2710
vi 2510 <2710 nen 520 <330 va330<334
=> 520<334
B) 5^299 < 5^300 = (5^2)^150 = 25^150
3^501 = (3^3)^167 = 27^167
=> 27^167 > 25^150 => 3^501 > 5^299
C) Ta có 3^23=3^21.3^2=(3^3)^7.9=27^7.9
5^15=5^14.5=(5^2)^7.5=25^7.5
vì 27^7>25^7;9>5 nên 27^7.9>25^7.5
vậy 3^23>5^15
Ta có: \(315^5\cdot299-313^6\cdot36\)
=\(315^5\cdot\left(299-313\cdot36\right)\)
=\(315^5\cdot\left(299-11268\right)\)
=\(315^5\cdot\left(-10969\right)\)
=\(315^5\cdot-\left(10969\right)\)
Vì \(10969⋮7\)nên suy ra: \(315^5\cdot-\left(10969\right)⋮7\)=> \(315^5\cdot299-313^6\cdot36⋮7\)
Vậy ....