Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a: \(=\dfrac{4x-2+6x^2-6x+2x^2+1}{2x\left(2x-1\right)}=\dfrac{8x^2-2x-1}{2x\left(2x-1\right)}\)
\(=\dfrac{1}{x}-\dfrac{1}{x+1}+\dfrac{1}{x+1}-\dfrac{1}{x+2}+...+\dfrac{1}{x+2013}-\dfrac{1}{x+2014}\)
=1/x-1/x+2014
\(=\dfrac{x+2014-x}{x\left(x+2014\right)}=\dfrac{2014}{x\left(x+2014\right)}\)
c: \(=\dfrac{x^3+2x+2x^2+2x+x^2-x+1}{\left(x+1\right)\left(x^2-x+1\right)}\)
\(=\dfrac{x^3+3x^2+3x+1}{\left(x+1\right)\left(x^2-x+1\right)}=\dfrac{x^2+2x+1}{x^2-x+1}\)
Đặt biểu thức là A
\(\Rightarrow\)A=\(\dfrac{\left(x+1\right)-x}{x\left(x+1\right)}+\dfrac{\left(x+2\right)-\left(x+1\right)}{\left(x+1\right)\left(x+2\right)}+\dfrac{\left(x+3\right)-\left(x+2\right)}{\left(x+2\right)\left(x+3\right)}+...+\dfrac{\left(x+2014\right)-\left(x+2013\right)}{\left(x+2013\right)\left(x+2014\right)}\)
\(\Leftrightarrow\dfrac{x+1}{x\left(x+1\right)}-\dfrac{x}{x\left(x+1\right)}+\dfrac{x+2}{\left(x+1\right)\left(x+2\right)}-\dfrac{x+1}{\left(x+1\right)\left(x+2\right)}+...+\dfrac{x+2014}{\left(x+2013\right)\left(x+2014\right)}-\dfrac{x+2013}{\left(x+2013\right)\left(x+2014\right)}\)\(\Leftrightarrow\dfrac{1}{x}-\dfrac{1}{x+1}+\dfrac{1}{x+1}-\dfrac{1}{x+2}-\dfrac{1}{x+2}-...-\dfrac{1}{x+2013}+\dfrac{1}{x+2013}-\dfrac{1}{x+2014}.\)\(\Leftrightarrow\dfrac{1}{x}-\dfrac{1}{x+2014}\)
\(\Leftrightarrow\dfrac{x+2014-x}{x\left(x+2014\right)}\)
\(\dfrac{2014}{x\left(x+2014\right)}\)
\(\dfrac{1}{x-3}-\dfrac{1}{x}=\dfrac{x-\left(x-3\right)}{x\left(x-3\right)}=\dfrac{x-x+3}{x\left(x-3\right)}=\dfrac{3}{x\left(x-3\right)}\)
\(B=\dfrac{1}{x^2-3x}+\dfrac{1}{x^2-9x+18}+\dfrac{1}{x^2-15x+54}+\dfrac{1}{x^2-21x+108}\)
\(=\dfrac{1}{x\left(x-3\right)}+\dfrac{1}{\left(x-3\right)\left(x-6\right)}+\dfrac{1}{\left(x-6\right)\left(x-9\right)}+\dfrac{1}{\left(x-9\right)\left(x-12\right)}\)
\(=\dfrac{1}{3}\left(\dfrac{3}{x\left(x-3\right)}+\dfrac{3}{\left(x-3\right)\left(x-6\right)}+\dfrac{3}{\left(x-6\right)\left(x-9\right)}+\dfrac{3}{\left(x-9\right)\left(x-12\right)}\right)\)
\(=\dfrac{1}{3}\left(-\dfrac{1}{x}+\dfrac{1}{x-3}-\dfrac{1}{x-3}+\dfrac{1}{x-6}-\dfrac{1}{x-6}+\dfrac{1}{x-9}-\dfrac{1}{x-9}+\dfrac{1}{x-12}\right)\)
\(=\dfrac{1}{3}\left(-\dfrac{1}{x}+\dfrac{1}{x-12}\right)\)
\(=\dfrac{1}{3}\cdot\dfrac{-\left(x-12\right)+x}{x\left(x-12\right)}\)
\(=\dfrac{4}{x\left(x-12\right)}\)
Bài 1: Thực hiện phép tính.
a) \(\left(x+2y\right)\left(x-2y\right)-5-x^2=x^2-4y^2-5-x^2=-4y^2-5\)
Bài 2: Phân tích đa thức thành nhân tử.
a) \(14x^3y^3-7x^2y+21x^2y^5=7x^2y\left(2xy^2-1+3y^4\right)\)
b) \(18x\left(1-x\right)-12y+12xy=18x\left(1-x\right)-12y\left(1-x\right)=6\left(1-x\right)\left(3x-2y\right)\)
c) \(9x^2-y^2+1-6x=\left(9x^2-6x+1\right)-y^2=\left(3x-1\right)^2-y^2=\left(3x-1-y\right)\left(3x-1+y\right)\)
Bài 1:
b: \(=\dfrac{x+3-4-x}{x-2}=\dfrac{-1}{x-2}\)
Bài 2:
a: \(=\dfrac{x+1}{2\left(x+3\right)}+\dfrac{2x+3}{x\left(x+3\right)}\)
\(=\dfrac{x^2+x+4x+6}{2x\left(x+3\right)}=\dfrac{x^2+5x+6}{2x\left(x+3\right)}=\dfrac{x+2}{2x}\)
d: \(=\dfrac{3}{2x^2y}+\dfrac{5}{xy^2}+\dfrac{x}{y^3}\)
\(=\dfrac{3y^2+10xy+2x^3}{2x^2y^3}\)
e: \(=\dfrac{x^2+2xy+x^2-2xy-4xy}{\left(x+2y\right)\left(x-2y\right)}=\dfrac{2x^2-4xy}{\left(x+2y\right)\cdot\left(x-2y\right)}=\dfrac{2x}{x+2y}\)
Bài 2:
a: ĐKXĐ: \(x\notin\left\{0;-1\right\}\)
\(\dfrac{1+x}{x+1}-\dfrac{x-1}{x^2+x}\)
\(=\dfrac{x\left(x+1\right)-x+1}{x\left(x+1\right)}\)
\(=\dfrac{x^2+x-x+1}{x^2+x}=\dfrac{x^2+1}{x^2+x}\)
b: ĐKXĐ: \(x\notin\left\{-23;1\right\}\)
\(\dfrac{2x}{x+23}\cdot\dfrac{3x}{x-1}+\dfrac{2x}{x+23}\cdot\dfrac{23-2x}{x-1}\)
\(=\dfrac{2x}{x+23}\cdot\left(\dfrac{3x}{x-1}+\dfrac{23-2x}{x-1}\right)\)
\(=\dfrac{2x}{x+23}\cdot\dfrac{3x+23-2x}{x-1}\)
\(=\dfrac{2x}{x+23}\cdot\dfrac{x+23}{x-1}=\dfrac{2x}{x-1}\)
Bài 3:
a: Sửa đề: AMCN
Ta có: ABCD là hình bình hành
=>BC=AD(1)
Ta có: M là trung điểm của BC
=>\(BM=MC=\dfrac{BC}{2}\left(2\right)\)
Ta có: N là trung điểm của AD
=>\(NA=ND=\dfrac{AD}{2}\left(3\right)\)
Từ (1),(2),(3) suy ra BM=MC=NA=ND
Xét tứ giác AMCN có
MC//AN
MC=AN
Do đó: AMCN là hình bình hành
b: Xét tứ giác ABMN có
BM//AN
BM=AN
Do đó: ABMN là hình bình hành
Hình bình hành ABMN có \(AB=BM\left(=\dfrac{BC}{2}\right)\)
nên ABMN là hình thoi
c: Ta có: BM//AD
=>\(\widehat{EBM}=\widehat{EAD}\)(hai góc đồng vị)
=>\(\widehat{EBM}=60^0\)
Xét ΔBEM có BE=BM(=BA) và \(\widehat{EBM}=60^0\)
nên ΔBEM đều
=>\(\widehat{BEM}=60^0\)
Xét hình thang ANME có \(\widehat{MEA}=\widehat{EAN}=60^0\)
nên ANME là hình thang cân
=>AM=NE