K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

13 tháng 9 2016

Lời giải :

Đặt S=1.2+2.3+3.4+4.5+…+99.100+100.101

3S=1.2.3+2.3.3+3.4.3+4.5.3+…+99.100.3+100.101.3

=1.2(3−0)+2.3(4−1)+3.4(5−2)+4.5(6−3)+…+99.100(101−98)+100.101(102−99)

=0.1.2-1.2.3+1.2.3-2.3.4+...+99.100.101-100.101.102

=100.101.102

S=100.101.34=343400

12 tháng 10 2022

1.Tính 

a) Ta có: 

  A=(1-1/22).(1-1/32)...(1-1/1002)

=>A=3/22.8/32.....9999/1002

=>A=(1.3/2.2).(2.4/3.3).....(99.101/100.100)

=>A=(1.2.3.....99/2.3.4.....100).(3.4.5.....101/2.3.4.....100)

=>A=1/100.101/2

=>A=101/200

b) Ta có: 

  B=-1/1.2-1/2.3-1/3.4-...-1/100.101

=>B=-(1/1.2+1/2.3+1/3.4+...+1/100.101)

=>B=-(1-1/2+1/2-1/3+1/3-1/4+...+1/100-1/101)

=>B=-(1-1/101)

=>B=-100/101

 c) Ta có:

 C=1.2+2.3+3.4+...+100.101

       =>3C=1.2.3+2.3.3+3.4.3+...+100.101.3

       =>3C=1.2.3+2.3.(4-1)+3.4.(5-2)+...+100.101.(102-99)

       =>3C=1.2.3-1.2.3+2.3.4-2.3.4+3.4.5-3.4.5+...+100.101.102

       =>3C=100.101.102

       =>3C=1030200

       =>C=343400

Chúc bạn hok tốt nhé >:)!!!!!

27 tháng 3 2022

\(S=-\left(1+2+...+2^{2009}+2^{2010}\right)\)

\(-2S=2\left(1+2+...+2^{2009}+2^{2010}\right)\)

\(\Rightarrow-2S+S=-S=2+2^2+...+2^{2010}+2^{2011}-1-2-...-2^{2009}-2^{2010}\)

\(-S=2^{2011}-1\Rightarrow S=1-2^{2011}\)

27 tháng 3 2022

S=22010 - 22009 - 22008 -...-2-1

=>2S=2 x 22010 - 2 x 22009 - 2 x 22008 -...-2 x 2 -2 x 1

2S=22011 - 22010 - 22009 - ... - 22 -2

=>S=1-22011

\(A=\frac{1}{2}+\frac{1}{2.3}+..+\frac{1}{2017.2018}\)

\(A=\frac{1}{1}-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+...+\frac{1}{2017}-\frac{1}{2018}\)

\(A=1-\frac{1}{2018}\)

\(A=\frac{2018}{2018}-\frac{1}{2018}\)

\(A=\frac{2017}{2018}\)

hok tốt!!

8 tháng 1 2019

a) \(S=1+2+2^2+...+2^{100}\)

\(2S=2+2^2+2^3+...+2^{101}\)

\(2S-S=\left(2+2^2+...+2^{101}\right)-\left(1+2+...+2^{100}\right)\)

\(S=2^{101}-1\)

b) \(X=2^{2012}-2^{2011}-...-2-1\)

\(X=2^{2012}-\left(1+2+...+2^{2011}\right)\)

Đặt \(X=2^{2012}-Y\)

Ta có :

\(Y=1+2+...+2^{2011}\)

\(2Y=2+2^2+...+2^{2012}\)

\(2Y-Y=\left(2+2^2+...+2^{2012}\right)-\left(1+2+...+2^{2011}\right)\)

\(Y=2^{2012}-1\)

\(\Rightarrow X=2^{2012}-2^{2012}+1\)

\(\Rightarrow X=1\)

\(\Rightarrow2010X=2010\)