\(\left(6x^3-9x^2+23x-12\right):\left(2x-3\right)\)

">
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

31 tháng 8 2020

1. \(x^3-6x^2+10x-4=0\)

<=> \(\left(x^3-2x^2\right)-\left(4x^2-8x\right)+\left(2x-4\right)=0\)

<=>  \(\left(x-2\right)\left(x^2-4x+2\right)=0\)

<=> \(\orbr{\begin{cases}x=2\\x^2-4x+2=0\left(1\right)\end{cases}}\)

Giải pt (1): \(\Delta=\left(-4\right)^2-4.2=8>0\)

=> pt (1) có 2 nghiệm: \(x_1=\frac{4+\sqrt{8}}{2}=2+\sqrt{2}\)

\(x_2=\frac{4-\sqrt{8}}{2}=2-\sqrt{2}\)

31 tháng 8 2020

1) Ta có: \(x^3-6x^2+10x-4=0\)

       \(\Leftrightarrow\left(x^3-2x^2\right)-\left(4x^2-8x\right)+\left(2x-4\right)=0\)

       \(\Leftrightarrow x^2\left(x-2\right)-4x\left(x-2\right)+2\left(x-2\right)=0\)

       \(\Leftrightarrow\left(x^2-4x+2\right)\left(x-2\right)=0\)

   + \(x-2=0\)\(\Leftrightarrow\)\(x=2\)\(\left(TM\right)\)

   + \(x^2-4x+2=0\)\(\Leftrightarrow\)\(\left(x^2-4x+4\right)-2=0\)

                                             \(\Leftrightarrow\)\(\left(x-2\right)^2=2\)

                                             \(\Leftrightarrow\)\(x-2=\pm\sqrt{2}\)

                                             \(\Leftrightarrow\)\(\orbr{\begin{cases}x=2+\sqrt{2}\approx3,4142\left(TM\right)\\x=2-\sqrt{2}\approx0,5858\left(TM\right)\end{cases}}\)

Vậy \(S=\left\{0,5858;2;3,4142\right\}\)

4 tháng 3 2019

x=0 ; x=2/3 - cau b 

anh giai tu giai thu

5 tháng 3 2019

Giai giùm đi

13 tháng 12 2022

a: \(\Leftrightarrow\left\{{}\begin{matrix}8x-4y+12-3x+6y-9=48\\9x-12y+9+16x-8y-36=48\end{matrix}\right.\)

=>5x+2y=48-12+9=45 và 25x-20y=48+36-9=48+27=75

=>x=7; y=5

b: \(\Leftrightarrow\left\{{}\begin{matrix}6x+6y-2x+3y=8\\-5x+5y-3x-2y=5\end{matrix}\right.\)

=>4x+9y=8 và -8x+3y=5

=>x=-1/4; y=1

c: \(\Leftrightarrow\left\{{}\begin{matrix}-4x-2+1,5=3y-6-6x\\11,5-12+4x=2y-5+x\end{matrix}\right.\)

=>-4x-0,5=-6x+3y-6 và 4x-0,5=x+2y-5

=>2x-3y=-5,5 và 3x-2y=-4,5

=>x=-1/2; y=3/2

e: \(\Leftrightarrow\left\{{}\begin{matrix}x\cdot2\sqrt{3}-y\sqrt{5}=2\sqrt{3}\cdot\sqrt{2}-\sqrt{5}\cdot\sqrt{3}\\3x-y=3\sqrt{2}-\sqrt{3}\end{matrix}\right.\)

=>\(x=\sqrt{2};y=\sqrt{3}\)

30 tháng 7 2018

a)

DK: x\(\ge\)-2,x\(\ge\)\(\dfrac{1}{2}\)

=>\(\sqrt{4\left(x+2\right)}-\sqrt{2x-1}+\sqrt{9\left(x+2\right)}=0\)

\(\Leftrightarrow2\sqrt{x+2}-\sqrt{2x-1}+3\sqrt{x+2}=0\)

\(\Leftrightarrow5\sqrt{x+2}-\sqrt{2x-1}=0\)

\(\Leftrightarrow5\sqrt{x+2}=\sqrt{2x-1}\)

<=>25x+50=2x-1

=>23x=-51

=>x=\(-\dfrac{51}{23}\)(ko thỏa mãn dk)

=> phương trình vô nghiệm..

b)

ĐKXĐ:\(x\ge1,x\ge-1\)

\(\Leftrightarrow\sqrt{\left(x+1\right)\left(x-1\right)}-3\sqrt{x-1}=0\)

\(\Leftrightarrow\sqrt{x-1}\left(\sqrt{x+1}-3\right)=0\)

\(\Rightarrow\left\{{}\begin{matrix}\sqrt{x-1}=0\\\sqrt{x+1}-3=0\end{matrix}\right.\)

\(\Rightarrow\left\{{}\begin{matrix}x=1\\x=8\end{matrix}\right.\)(nhận)

Vậy S={1;8}

c) ĐKXĐ:

\(x\ge0\)

\(\Leftrightarrow6-9\sqrt{2x}-2\sqrt{2x}+6x=6x-5\)

\(\Leftrightarrow-11\sqrt{2x}=-11\)

\(\Leftrightarrow\sqrt{2x}=1\)

\(\Leftrightarrow2x=1\\ \Leftrightarrow x=\dfrac{1}{2}\)

30 tháng 7 2018

Câu a :\(\sqrt{4x+8}-2\sqrt{2x-1}+\sqrt{9x+18}=0\) ( ĐK : \(x\ge\dfrac{1}{2}\) )

\(\Leftrightarrow\sqrt{4x+8}+\sqrt{9x+18}=\sqrt{2x-1}\)

\(\Leftrightarrow2\sqrt{x+2}+3\sqrt{x+2}=\sqrt{2x-1}\)

\(\Leftrightarrow5\sqrt{x+2}=\sqrt{2x-1}\)

\(\Leftrightarrow25\left(x+2\right)=2x-1\)

\(\Leftrightarrow25x+50=2x-1\)

\(\Leftrightarrow23x=-51\)

\(\Leftrightarrow x=-\dfrac{51}{23}< -\dfrac{1}{2}\)

Vậy phương trình vô nghiệm .

Câu b :

\(\sqrt{x^2-1}-\sqrt{9\left(x-1\right)}=0\) ( ĐK : \(x\ge1\) )

\(\Leftrightarrow\sqrt{\left(x-1\right)\left(x+1\right)}-3\sqrt{\left(x-1\right)}=0\)

\(\Leftrightarrow\sqrt{\left(x-1\right)}\left(\sqrt{x+1}-3\right)=0\)

\(\Leftrightarrow\left[{}\begin{matrix}\sqrt{x-1}=0\\\sqrt{x+1}-3=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=1\\x=8\end{matrix}\right.\)

Vậy \(S=\left\{1;8\right\}\)

Câu c : \(\left(3-\sqrt{2x}\right)\left(2-3\sqrt{2x}\right)=6x-5\) ( ĐK : \(x\ge\dfrac{5}{6}\) )

\(\Leftrightarrow6-9\sqrt{2x}-2\sqrt{2x}+6x=6x-5\)

\(\Leftrightarrow-11\sqrt{2x}+11=0\)

\(\Leftrightarrow-11\left(\sqrt{2x}-1\right)=0\)

\(\Leftrightarrow\sqrt{2x}-1=0\)

\(\Leftrightarrow x=\dfrac{1}{2}\left(TMĐK\right)\)

Vậy \(S=\left\{\dfrac{1}{2}\right\}\)

Chúc bạn học tốt

AH
Akai Haruma
Giáo viên
14 tháng 7 2019

Câu 1:

ĐKXĐ: $3\geq x\geq -2$

PT \(\sqrt{x+2}-2-(\sqrt{3-x}-1)=x^2-6x+8\)

\(\Leftrightarrow \frac{x-2}{\sqrt{x+2}+2}-\frac{2-x}{\sqrt{3-x}+1}=(x-2)(x-4)\) (liên hợp)

\(\Leftrightarrow (x-2)\left[\frac{1}{\sqrt{x+2}+2}+\frac{1}{\sqrt{3-x}+1}-x+4\right]=0\)

Ta thấy với mọi $3\geq x\geq -2$ thì:

\(\frac{1}{\sqrt{x+2}+2}+\frac{1}{\sqrt{3-x}+1}>0\)

\(-x+4>0\)

\(\Rightarrow \frac{1}{\sqrt{x+2}+2}+\frac{1}{\sqrt{3-x}+1}-x+4>0\)

\(\Rightarrow \frac{1}{\sqrt{x+2}+2}+\frac{1}{\sqrt{3-x}+1}-x+4\neq 0\)

Do đó $x-2=0$ hay PT có nghiệm duy nhất $x=2$ (t/m)

15 tháng 7 2019

Em thử thôi nha! Ko chắc...

2)Nhận xét x = 1 là một nghiệm. Xét x khác 1, khi đó

ĐK: \(x>1\)

PT \(\Leftrightarrow\left(\sqrt{x}-1\right)-\sqrt{x-1}=\left(\sqrt{x+8}-3\right)-\left(\sqrt{x+3}-2\right)\) (bớt 1 ở mỗi vế)

\(\Leftrightarrow\frac{x-1}{\sqrt{x}+1}-\frac{x-1}{\sqrt{x-1}}=\frac{x-1}{\sqrt{x+8}+3}-\frac{x-1}{\sqrt{x+3}+2}\)

\(\Leftrightarrow\left(x-1\right)\left[\left(\frac{1}{\sqrt{x}+1}+\frac{1}{\sqrt{x+3}+2}\right)-\left(\frac{1}{\sqrt{x-1}}+\frac{1}{\sqrt{x+8}+3}\right)\right]=0\)

Vì x > 1 nên x - 1 khác 0 suy ra \(\left(\frac{1}{\sqrt{x}+1}+\frac{1}{\sqrt{x+3}+2}\right)-\left(\frac{1}{\sqrt{x-1}}+\frac{1}{\sqrt{x+8}+3}\right)=0\) (1)

Dễ thấy vế trái của pt (1) < 0 với mọi x > 1 (em ko biết lí luận thế nào nữa...)

Do đó với x > 1 thì pt vô nghiệm.

Vậy pt có nghiệm duy nhất x = 1

11 tháng 12 2017

\(\Leftrightarrow\hept{\begin{cases}x>=1\\4\left(x^2-2x+1\right)=2x^2+2x+2\end{cases}}\)     \(\Leftrightarrow4x^2-8x+4=2x^2+2x+2\)

                                                                                            \(\Leftrightarrow x^2-5x+1=0\)

                                                                                              \(\Leftrightarrow\orbr{\begin{cases}x=\frac{5+\sqrt{21}}{2}\left(tm\right)\\x=\frac{5-\sqrt{21}}{2}\left(ktm\right)\end{cases}}\)

Thay x=\(\frac{5+\sqrt{21}}{2}\)vào T là xong

18 tháng 6 2017

Câu 1 = 20.20204103 

Câu 2 = 34 nha !

Đúng 100% lun