K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

Bài 3:

3: \(6x\left(x-y\right)-9y^2+9xy\)

\(=6x\left(x-y\right)+9xy-9y^2\)

\(=6x\left(x-y\right)+9y\left(x-y\right)\)

\(=\left(x-y\right)\left(6x+9y\right)\)

\(=3\left(2x+3y\right)\left(x-y\right)\)

Bài 4:

loading...

loading...

loading...

4 tháng 9 2018

\(2x^7+x^5+2\div x^2+x+1=2x^5-3x^3-3x^2+1\left(dư1-x\right)\)

11 tháng 12 2020

\(\dfrac{3-3x}{\left(1+x\right)^2}:\dfrac{6x^2-6}{x+1}\)

\(=\dfrac{3\left(1-x\right)}{\left(x+1\right)^2}:\dfrac{6\left(x^2-1\right)}{x+1}\)

\(=\dfrac{-3\left(x-1\right)}{\left(x+1\right)^2}:\dfrac{6\left(x+1\right)\left(x-1\right)}{x+1}\)

\(=\dfrac{-3\left(x-1\right)}{\left(x+1\right)^2}\cdot\dfrac{x+1}{6\left(x+1\right)\left(x-1\right)}\)

\(=\dfrac{-3\left(x-1\right)\left(x+1\right)}{6\left(x+1\right)^3\left(x-1\right)}=\dfrac{-3\left(x+1\right)}{6\left(x+1\right)\left(x+1\right)^2}=\dfrac{-3}{6\left(x+1\right)^2}=\dfrac{-1}{2\left(x+1\right)^2}\)

b) Bạn có thể viết kiểu latex được không ạ ?

 

12 tháng 12 2020

Mình ko bt viết

1 tháng 9 2021

\(\left[\left(3-x\right)^5-7\left(x-3\right)^4-4\left(x-3\right)^2\right]:\left(x^2-6x+9\right)=\left[\left(3-x\right)^5-7\left(3-x\right)^4-4\left(3-x\right)^2\right]:\left(3-x\right)^2=\left(3-x\right)^2\left[\left(3-x\right)^3-7\left(3-x\right)^2-4\right]:\left(3-x\right)^2=\left(3-x\right)^3-7\left(3-x\right)^2-4=27-27x+9x^2-x^3-63+42x-7x^2-4=-x^3+2x^2+15x-40\)

\(\dfrac{\left(3-x\right)^5-7\left(x-3\right)^4-4\left(x-3\right)^2}{x^2-6x+9}\)

\(=\dfrac{-\left(x-3\right)^5-7\left(x-3\right)^4-4\left(x-3\right)^2}{\left(x-3\right)^2}\)

\(=-\left(x-3\right)^3-7\left(x-3\right)^2-4\)

24 tháng 5 2019

a)  x 2  + 2x + 1.            b) x + 3.         c)  x 2  – x + 1.

24 tháng 12 2021

b: \(=\dfrac{7x-42-x^2+36}{x\left(x-6\right)}=\dfrac{-x^2+7x-6}{x\left(x-6\right)}=\dfrac{-x+1}{x}\)

24 tháng 12 2021

\(\dfrac{x+3}{\left(x-3\right)\left(x+3\right)}-\dfrac{3}{x\left(x-3\right)}=\dfrac{x\left(x+3\right)-3\left(x+3\right)}{x\left(x-3\right)\left(x+3\right)}=\dfrac{x^2+3x-3x-9}{x\left(x-3\right)\left(x+3\right)}=\dfrac{\left(x-3\right)\left(x+3\right)}{x\left(x-3\right)\left(x+3\right)}=\dfrac{1}{x}\)

28 tháng 10 2017

Có:

\(\left[7\left(x-y\right)^5+6\left(y-x\right)^4-2\left(x-y\right)^3+\left(y-x\right)^2\right]:\left(x-y\right)^2\)

\(=\left[7\left(x-y\right)^5+6\left(x-y\right)^4-2\left(x-y\right)^3+\left(x-y\right)^2\right]:\left(x-y\right)^2\)

\(=\left[7\left(x-y\right)^5:\left(x-y\right)^2\right]+\left[6\left(x-y\right)^4:\left(x-y\right)^2\right]-\left[2\left(x-y\right)^3:\left(x-y\right)^2\right]+\left(x-y\right)^2:\left(x-y\right)^2\)

\(=7\left(x-y\right)^3+6\left(x-y\right)^2-2\left(x-y\right)+1\)

Bài 2:

1: \(A=\left(x+2\right)\left(x^2-2x+4\right)+2\left(x+1\right)\left(1-x\right)\)

\(=\left(x+2\right)\left(x^2-x\cdot2+2^2\right)-2\left(x+1\right)\left(x-1\right)\)

\(=x^3+2^3-2\left(x^2-1\right)\)

\(=x^3+8-2x^2+2=x^3-2x^2+10\)

\(B=\left(2x-y\right)^2-2\left(4x^2-y^2\right)+\left(2x+y\right)^2+4\left(y+2\right)\)

\(=\left(2x-y\right)^2-2\cdot\left(2x-y\right)\left(2x+y\right)+\left(2x+y\right)^2+4\left(y+2\right)\)

\(=\left(2x-y-2x-y\right)^2+4\left(y+2\right)\)

\(=\left(-2y\right)^2+4\left(y+2\right)\)

\(=4y^2+4y+8\)

2: Khi x=2 thì \(A=2^3-2\cdot2^2+10=8-8+10=10\)

3: \(B=4y^2+4y+8\)

\(=4y^2+4y+1+7\)

\(=\left(2y+1\right)^2+7>=7>0\forall y\)

=>B luôn dương với mọi y

Bài 1:

5: \(x^2\left(x-y+1\right)+\left(x^2-1\right)\left(x+y\right)\)

\(=x^3-x^2y+x^2+x^3+x^2y-x-y\)

\(=2x^3-x+x^2-y\)

6: \(\left(3x-5\right)\left(2x+11\right)-6\left(x+7\right)^2\)

\(=6x^2+33x-10x-55-6\left(x^2+14x+49\right)\)

\(=6x^2+23x-55-6x^2-84x-294\)

=-61x-349