Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) Vì x và y là hai địa lượng tỉ lệ nghịch
\(y=\frac{a}{x}=a=x.y\)
Thay \(a=2.4\)
Vậy \(a=8\)
b) \(x=\frac{a}{y}\)
c) Vì x là y là hai đại lượng tỉ lệ nghịch
\(x=\frac{a}{y}=x=\frac{a}{y}\)
Thay \(x=\frac{8}{-1}\); Thay \(x=\frac{8}{2}\)
\(\hept{\begin{cases}x=4\\x=8\end{cases}}\)
a. ta có : \(\frac{5}{-3}=\frac{15}{-9}=-\frac{15}{9}\)
b.\(-\frac{1}{5}< 0< \frac{1}{100}\Rightarrow-\frac{1}{5}< \frac{1}{100}\)
c.\(\hept{\begin{cases}2^3=8\\3^2=9\end{cases}\Rightarrow2^3< 3^2}\)
Answer:
a) Với \(x=1\Rightarrow y=2\)
\(\Rightarrow\) Điểm \(A\left(1;2\right)\in\) đồ thị hàm số \(\left(d\right)\)
Vậy hai điểm \(O\left(0;0\right);A\left(1;2\right)\) là đồ thị hàm số \(\left(d\right)\)
(Vì phần này tự nhiên không gửi được hình nên là nếu bạn có nhu cầu hình nữa thì nhắn cho mình nhé.)
b) Ta thay \(x=x_P=40\) vào \(\left(d\right)\)
Có: \(y=2.40=80\ne y_P\)
\(\Rightarrow\) Điểm \(P\left(40;20\right)\in\) đồ thị hàm số \(\left(d\right)\)
A B C G H
a) Ta có:
\(\Delta ABC\) cân tại A => Đường cao AH đồng thời cũng là đường trung tuyến
\(\Rightarrow BH=\dfrac{BC}{2}=\dfrac{6}{2}=3\left(cm\right)\)
Xét \(\Delta ABH\) vuông tại H, ta có:
\(AH^2+BH^2=AB^2\) ( Định lý Py-ta-go )
\(\Rightarrow AH^2=AB^2-BH^2=5^2-3^2=25-9=16\left(=\left(\pm4\right)^2\right)\)
\(\Rightarrow AH=4\left(cm\right)\) (AH>0)
Vậy BH=3 cm; AH=4 cm
Tham khảo hình bài làm đầy đủ :
Câu hỏi của Nguyễn Hoàng Bảo Nhi - Toán lớp 0 | Học trực tuyến
Chúc bn học tốt!
\(B=3+3^3+3^5+...+3^{101}\)
\(3^2.B=3^3+3^5+3^7+...+3^{103}\)
\(\left(3^2-1\right)B=\left(3^3+3^5+3^7+...+3^{103}\right)-\left(3+3^3+3^5+...+3^{101}\right)\)
\(8B=3^{103}-3\)
\(B=\frac{3^{103}-3}{8}\)
\(b^2=a.c\)\(=>\frac{a}{b}=\frac{b}{c}\)
Đặt : \(\frac{a}{b}=\frac{b}{c}=k\)
Ta có : \(a=b.k\)
\(b=c.k\)
\(=>\)\(\frac{a}{c}=\frac{b.k}{c}=\frac{c.k+k}{c}=k^2\left(1\right)\)
\(\left(\frac{a+2012b}{b+2012c}\right)^2=\left(\frac{bk+2012b}{ck+2012c}\right)^2=\left(\frac{b\left(k+2012\right)}{c\left(k+2012\right)}\right)^2=\left(\frac{b}{c}\right)^2=k^2\left(2\right)\)
Từ (1) và (2) \(=>\frac{a}{c}=\left(\frac{a+2012b}{b+2012c}\right)^2\left(đpcm\right)\)
Hok tốt~
a, theo pytago ta có:
AB2+AC2=BC2 <=> AC=\(\sqrt{10^2-6^2}\)=8 (cm)
so sánh: BAC>ABC>ACB vì BC>AC>AB
b, vì A là trung điểm BD nên CA là trung tuyến của tam giác DBC
mà CA\(\perp\)BD nên CA là đường cao của tam giác DBC
=> CA vừa là trung tuyến vừa là đường cao của tam giác DBC nên DBC cân ở C
a) A + x2 - 4xy2 + 2xz - 3y2 = 0
=> A = -x2 + 4xy2 - 2xz + 3y2
b) B + 5x2 - 2xy = 6x2 + 9xy - y2
=> B = 6x2 + 9xy - y2 - 5x2 + 2xy= x2 + 11xy - y2
c) 3xy - 4y2 - A = x2 - 7xy + 8y2
=> A = 3xy - 4y2 - x2 + 7xy - 8y2 = -12y2 + 10xy - x2
Trả lời:
a, A + ( x2 - 4xy2 + 2xz - 3y2 ) = 0
=> A = - ( x2 - 4xy2 + 2xz - 3y2 ) = - x2 + 4xy2 - 2xz + 3y2
b, B + ( 5x2 - 2xy ) = 6x2 + 9xy - y2
=> B = 6x2 + 9xy - y2 - ( 5x2 - 2xy ) = 6x2 + 9xy - y2 - 5x2 + 2xy = x2 + 11xy - y2
c, ( 3xy - 4y2 ) - A = x2 - 7xy + 8y2
=> A = 3xy - 4y2 - ( x2 - 7xy + 8y2 ) = 3xy - 4y2 - x2 + 7xy - 8y2 = 10xy - 12y2 - x2
d, B + ( 4x2y + 5y2 - 3xz + z2 ) = x2 + 11xy - y2 + 4x2y + 5y2 - 3xz + z2 = x2 + 11xy + 4y2 + 4x2y - 3xz + z2
a)Lần 1 tivi giảm số tiền là: 9 800 000.30%=2 940 000 (đồng) Số tiền của tivi sau khi giảm lần 1 là: 9 800 000-2 940 000=6 860 000 (đồng) Lần 2 tivi giảm số tiền là 6 860 000.10%=686 000 (đồng) Số tiền của tivi sau khi giảm lần 2 là : 6 860 000- 686 000= 6 174 000 (đồng) b) 6 174 000 đồng= 6,2 triệu đồng
mình nhấn ra bị như thế