\(\frac{x+7}{2x+3}\)- \(\f...">
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

2 tháng 12 2017

a) \(\frac{x+7}{2x+3}-\frac{5}{2x+3}=\frac{x+7-5}{2x+3}=\frac{x+2}{2x+3}\)

b) \(\frac{m^2}{3\left(m+3\right)}+\frac{2m+3}{m+3}=\frac{m^2}{3\left(m+3\right)}+\frac{\left(2m+3\right).3}{3.\left(m+3\right)}\)

\(=\frac{m^2+6m+9}{3\left(m+3\right)}=\frac{\left(m+3\right)^2}{3\left(m+3\right)}=\frac{m+3}{3}\)

c) \(\frac{x^2-4}{x+5}.\frac{2x+10}{x+2}=\frac{\left(x-2\right)\left(x+2\right).2.\left(x+5\right)}{\left(x+5\right).\left(x+2\right)}=\left(x-2\right).2=2x-4\)

d) \(\frac{3+6y}{y^2-2y+1}:\frac{2y+1}{y-1}=\frac{3\left(2y+1\right)}{\left(y-1\right)^2}.\frac{y-1}{2y+1}=\frac{3}{y-1}\)

2 tháng 12 2017

\(a,\frac{x+7}{2x+3}-\frac{5}{2x+3}\)

\(=\frac{x+7-5}{2x+3}\)

\(=\frac{x+2}{2x+3}\)

\(b,\frac{m^2}{3\left(m+3\right)}+\frac{2m+3}{m+3}\)

\(=\frac{m^2}{3\left(m+3\right)}+\frac{3\left(2m+3\right)}{3\left(m+3\right)}\)

\(=\frac{m^2+6m+9}{3\left(m+3\right)}\)

\(=\frac{\left(m+3\right)^2}{3\left(m+3\right)}\)

\(=\frac{m+3}{3}\)

\(c,\frac{x^2-4}{x+5}.\frac{2x+10}{x+2}\)

\(=\frac{\left(x+2\right)\left(x-2\right)}{x+5}.\frac{2\left(x+5\right)}{x+2}\)

\(=2\left(x-2\right)\)

d, nghịch đảo lên rồi làm tương tự nha

2 tháng 3 2020
https://i.imgur.com/qz7eYvL.jpg
2 tháng 3 2020

a.\(\frac{1-3x}{2}-\frac{x+3}{2}=\frac{1-3x-x-3}{2}=\frac{1-4x-3}{2}=\frac{-4x-2}{2}=\frac{-2\left(2x+1\right)}{2}=-2x-1\)

b. \(\frac{2\left(x+y\right)\left(x-y\right)}{x}-\frac{-2y^2}{x}=\frac{2\left(x^2-y^2\right)+2y^2}{x}=\frac{2x^2-2y^2+2y^2}{x}=2x\)

c. \(\frac{3x+1}{x+y}-\frac{2x-3}{x+y}=\frac{3x+1-2x+3}{x+y}=\frac{x+4}{x+y}\)

d. \(\frac{xy}{2x-y}-\frac{x^2-1}{y-2x}=\frac{xy}{2x-y}-\frac{1-x^2}{2x-y}=\frac{xy-1+x^2}{2x-y}\)

e. \(\frac{4x-1}{3x^2y}-\frac{7x-1}{3x^2y}=\frac{4x-1-7x+1}{3x^2y}=\frac{-3x}{3x^2y}=\frac{-1}{xy}\)

15 tháng 3 2020

1, \(\frac{4y^2}{11x^4}.\left(-\frac{3x^2}{8y}\right)\)\(=\frac{4y.y}{11x^2.x^2}.\frac{-3x^2}{2.4y}\)\(=\frac{y}{11x^2}.\frac{-3}{2}=\frac{-3y}{22x^2}\)

2, \(\frac{4x^2}{5y^2}:\frac{6x}{5y}:\frac{2x}{3y}\)\(=\frac{4x^2}{5y^2}.\frac{5y}{6x}.\frac{3y}{2x}\)\(=\frac{2x.2x}{5y.y}.\frac{5y}{3.2x}.\frac{3y}{2x}\)\(=\frac{2x}{y}.\frac{1}{3}.\frac{3y}{2x}\)

\(\frac{2x}{3y}.\frac{3y}{2x}=1\)

3, \(\frac{x^2-4}{3x+12}.\frac{x+4}{2x-4}\)\(=\frac{\left(x-2\right)\left(x+2\right)}{3\left(x+4\right)}.\frac{x+4}{2\left(x-2\right)}\)\(=\frac{\left(x+2\right)}{3}.\frac{1}{2}=\frac{x+2}{6}\)

4, \(\frac{5x+10}{4x-8}.\frac{4-2x}{x+2}\)\(=\frac{5\left(x+2\right)}{4\left(x-2\right)}.\left(-\frac{2\left(x-2\right)}{x+2}\right)=\frac{5}{4}.\frac{-2}{1}=-\frac{5}{2}\)

5, \(\frac{x^2-36}{2x+10}.\frac{3}{6-x}=\frac{\left(x-6\right)\left(x+6\right)}{2\left(x+5\right)}.\frac{3}{-\left(x-6\right)}=\frac{x+6}{2\left(x+5\right)}.\frac{-3}{1}=\frac{-3\left(x+6\right)}{2\left(x+5\right)}\)

6, \(\frac{x^2-9y^2}{x^2y^2}.\frac{3xy}{2x-6y}=\frac{\left(x-3y\right)\left(x+3y\right)}{\left(xy\right)^2}.\frac{3xy}{2\left(x-3y\right)}=\frac{x+3y}{xy}.\frac{3}{2}=\frac{3\left(x+3y\right)}{2xy}\)

7, \(\frac{3x^2-3y^2}{5xy}.\frac{15x^2y}{2y-2x}=\frac{3\left(x-y\right)\left(x+y\right)}{5xy}.\frac{5xy.3x}{-2\left(x-y\right)}=\frac{3\left(x+y\right)}{1}.\frac{3x}{-2}=\frac{-9x\left(x+y\right)}{2}\)

15 tháng 3 2020

Làm rõ lâu.

14 tháng 2 2020

Bài 2: \(a,\frac{7x-1}{2x^2+6x}=\frac{7x-1}{2x\left(x+3\right)}=\frac{\left(7x-1\right)\left(x-3\right)}{2x\left(x+3\right)\left(x-3\right)}\) 

 \(\frac{5-3x}{x^2-9}=\frac{5-3x}{\left(x-3\right)\left(x+3\right)}=\frac{\left(5-3x\right)2x}{2x\left(x-3\right)\left(x+3\right)}\)

\(b,\frac{x+1}{x-x^2}=\frac{x+1}{x\left(1-x\right)}=-\frac{x+1}{x\left(x+1\right)}=-\frac{2\left(x-1\right)\left(x+1\right)}{2x\left(x-1\right)^2}\) 

 \(\frac{x+2}{2-4x+2x^2}=\frac{x+2}{2\left(x-1\right)^2}=\frac{2x\left(x+2\right)}{2x\left(x-1\right)^2}\)

\(c,\frac{4x^2-3x+5}{x^3-1}=\frac{4x^2-3x+5}{\left(x-1\right)\left(x^2+x+1\right)}\) 

\(\frac{2x}{x^2+x+1}=\frac{2x\left(x-1\right)}{\left(x-1\right)\left(x^2+x+1\right)}\)

\(\frac{6}{x-1}=\frac{6\left(x^2+x+1\right)}{\left(x-1\right)\left(x^2+x+1\right)}\)

\(d,\frac{7}{5x}=\frac{7.2\left(2y-x\right)\left(2y+x\right)}{2.5x\left(2y-x\right)\left(2y+x\right)}\)

\(\frac{4}{x-2y}=-\frac{4}{2y-x}=-\frac{4.2.5x\left(2x+x\right)}{2.5x\left(2y-x\right)\left(2y+x\right)}\)

\(\frac{x-y}{8y^2-2x^2}=\frac{x-y}{2\left(4y^2-x^2\right)}=\frac{x-y}{2\left(2y-x\right)\left(2y+x\right)}=\frac{5x\left(x-y\right)}{2.5x.\left(2y-x\right)\left(2y+x\right)}\)

a) Để giá trị của biểu thức \(\frac{x-4}{\frac{2x-1}{x-1}}\) được xác định

thì \(\frac{2x-1}{x-1}\ne0\)

\(\left\{{}\begin{matrix}2x-1\ne0\\x-1\ne0\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}2x\ne1\\x\ne1\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x\ne\frac{1}{2}\\x\ne1\end{matrix}\right.\)

Vậy: ĐKXĐ của biểu thức \(\frac{x-4}{\frac{2x-1}{x-1}}\)\(x\ne\frac{1}{2}\) và x≠1

b)

Để giá trị của biểu thức \(\frac{-5}{\frac{x-2}{3x+1}}\) được xác định

thì \(\frac{x-2}{3x+1}\ne0\)

\(\left\{{}\begin{matrix}x-2\ne0\\3x+1\ne0\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x\ne2\\3x\ne-1\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x\ne2\\x\ne\frac{-1}{3}\end{matrix}\right.\)

Vậy: ĐKXĐ của biểu thức \(\frac{-5}{\frac{x-2}{3x+1}}\)\(x\ne\frac{-1}{3}\) và x≠2

c)Để giá trị của biểu thức \(\frac{x^2+2x+5}{2x^2+5x+3}\) thì \(2x^2+5x+3\ne0\)

hay \(2x^2+2x+3x+3\ne0\Leftrightarrow2x\left(x+1\right)+3\left(x+1\right)\ne0\)

\(\Leftrightarrow\left(x+1\right)\left(2x+3\right)\ne0\)

\(\Leftrightarrow\left\{{}\begin{matrix}x+1\ne0\\2x+3\ne0\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x\ne-1\\2x\ne-3\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x\ne1\\x\ne\frac{-3}{2}\end{matrix}\right.\)

Vậy: Để giá trị của biểu thức \(\frac{x^2+2x+5}{2x^2+5x+3}\) được xác định thì \(x\ne\frac{-3}{2}\) và x≠1

d) Để giá trị của biểu thức \(\frac{x^2}{\left(x+y\right)\left(1-y\right)}\) được xác định thì

\(\left(x+y\right)\left(1-y\right)\ne0\)

hay \(\left\{{}\begin{matrix}x+y\ne0\\1-y\ne0\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x+1\ne0\\y\ne1\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x\ne-1\\y\ne1\end{matrix}\right.\)

Vậy: Để giá trị của biểu thức \(\frac{x^2}{\left(x+y\right)\left(1-y\right)}\) được xác định thì x≠-1 và y≠1

e) Để giá trị của biểu thức \(\frac{x^2y^2}{\left(1+x\right)\left(1-y\right)}\) được xác định thì

\(\left(1+x\right)\left(1-y\right)\ne0\)

hay \(\left\{{}\begin{matrix}1+x\ne0\\1-y\ne0\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x\ne-1\\y\ne1\end{matrix}\right.\)

Vậy: Để giá trị của biểu thức ​\(\frac{x^2y^2}{\left(1+x\right)\left(1-y\right)}\)được xác định thì x≠-1 và y≠1

11 tháng 2 2020

sai rồi nhé

cái câu a

Bài 1:

a) Ta có: \(\frac{2x}{x^2+2xy}+\frac{y}{xy-2y^2}+\frac{4}{x^2-4y^2}\)

\(=\frac{2x}{x\left(x+2y\right)}+\frac{y}{y\left(x-2y\right)}+\frac{4}{\left(x-2y\right)\left(x+2y\right)}\)

\(=\frac{2}{x+2y}+\frac{y}{x-2y}+\frac{4}{\left(x-2y\right)\left(x+2y\right)}\)

\(=\frac{2\left(x-2y\right)}{\left(x+2y\right)\left(x-2y\right)}+\frac{y\left(x+2y\right)}{\left(x-2y\right)\left(x+2y\right)}+\frac{4}{\left(x-2y\right)\left(x+2y\right)}\)

\(=\frac{2x-4y+xy+2y^2+4}{\left(x-2y\right)\cdot\left(x+2y\right)}\)

b) Ta có: \(\frac{1}{x-y}+\frac{3xy}{y^3-x^3}+\frac{x-y}{x^2+xy+y^2}\)

\(=\frac{x^2+xy+y^2}{\left(x-y\right)\left(x^2+xy+y^2\right)}-\frac{3xy}{\left(x-y\right)\left(x^2+xy+y^2\right)}+\frac{\left(x-y\right)^2}{\left(x-y\right)\left(x^2+xy+y^2\right)}\)

\(=\frac{x^2+xy+y^2-3xy+x^2-2xy+y^2}{\left(x-y\right)\left(x^2+xy+y^2\right)}\)

\(=\frac{2x^2-4xy+2y^2}{\left(x-y\right)\left(x^2+xy+y^2\right)}\)

\(=\frac{2\left(x^2-2xy+y^2\right)}{\left(x-y\right)\left(x^2+xy+y^2\right)}\)

\(=\frac{2\left(x-y\right)^2}{\left(x-y\right)\left(x^2+xy+y^2\right)}\)

\(=\frac{2x-2y}{x^2+xy+y^2}\)

c) Ta có: \(\frac{xy}{2x-y}-\frac{x^2-1}{y-2x}\)

\(=\frac{xy}{2x-y}+\frac{x^2-1}{2x-y}\)

\(=\frac{x^2+xy-1}{2x-y}\)

d) Ta có: \(\frac{2\left(x+y\right)\left(x-y\right)}{x}-\frac{-2y^2}{x}\)

\(=\frac{2\left(x^2-y^2\right)+2y^2}{x}\)

\(=\frac{2x^2-2y^2+2y^2}{x}\)

\(=\frac{2x^2}{x}=2x\)

Bài 2:

a) Ta có: \(\frac{4x+1}{2}-\frac{3x+2}{3}\)

\(=\frac{3\left(4x+1\right)}{6}-\frac{2\left(3x+2\right)}{6}\)

\(=\frac{12x+3-6x-4}{6}\)

\(=\frac{6x-1}{6}\)

b) Ta có: \(\frac{x+3}{x}-\frac{x}{x-3}+\frac{9}{x^2-3x}\)

\(=\frac{\left(x+3\right)\left(x-3\right)}{x\left(x-3\right)}-\frac{x^2}{x\left(x-3\right)}+\frac{9}{x\left(x-3\right)}\)

\(=\frac{x^2-9-x^2+9}{x\left(x-3\right)}=\frac{0}{x\left(x-3\right)}=0\)

c) Ta có: \(\frac{x+3}{x^2+1}-\frac{1}{x^2+2}\)

\(=\frac{\left(x+3\right)\left(x^2+2\right)}{\left(x^2+1\right)\left(x^2+2\right)}-\frac{x^2+1}{\left(x^2+2\right)\left(x^2+1\right)}\)

\(=\frac{x^3+2x+3x^2+6-x^2-1}{\left(x^2+1\right)\left(x^2+2\right)}\)

\(=\frac{x^3+2x^2+2x+5}{\left(x^2+1\right)\left(x^2+2\right)}\)

e) Ta có: \(\frac{3}{2x^2+2x}+\frac{2x-1}{x^2-1}-\frac{2}{x}\)

\(=\frac{3}{2x\left(x+1\right)}+\frac{2x-1}{\left(x+1\right)\left(x-1\right)}-\frac{2}{x}\)

\(=\frac{3\left(x-1\right)}{2x\left(x+1\right)\left(x-1\right)}+\frac{2x\left(2x-1\right)}{2x\left(x+1\right)\left(x-1\right)}-\frac{2\cdot2\cdot\left(x+1\right)\left(x-1\right)}{2x\left(x+1\right)\left(x-1\right)}\)

\(=\frac{3x-3+4x^2-2x-4\left(x^2-1\right)}{2x\left(x+1\right)\left(x-1\right)}\)

\(=\frac{4x^2+x-3-4x^2+4}{2x\left(x+1\right)\left(x-1\right)}\)

\(=\frac{x+1}{2x\left(x+1\right)\left(x-1\right)}=\frac{1}{2x\left(x-1\right)}\)

d) Ta có: \(\frac{1}{3x-2}-\frac{4}{3x+2}-\frac{-10x+8}{9x^2-4}\)

\(=\frac{3x+2}{\left(3x-2\right)\left(3x+2\right)}-\frac{4\left(3x-2\right)}{\left(3x+2\right)\left(3x-2\right)}-\frac{-10x+8}{\left(3x-2\right)\left(3x+2\right)}\)

\(=\frac{3x+2-12x+8+10x-8}{\left(3x-2\right)\left(3x+2\right)}\)

\(=\frac{x+2}{\left(3x-2\right)\left(3x+2\right)}\)

f) Ta có: \(\frac{3x}{5x+5y}-\frac{x}{10x-10y}\)

\(=\frac{3x}{5\left(x+y\right)}-\frac{x}{10\left(x-y\right)}\)

\(=\frac{3x\cdot2\cdot\left(x-y\right)}{10\left(x+y\right)\left(x-y\right)}-\frac{x\cdot\left(x+y\right)}{10\left(x-y\right)\left(x+y\right)}\)

\(=\frac{6x^2-6xy-x^2-xy}{10\left(x-y\right)\left(x+y\right)}\)

\(=\frac{5x^2-7xy}{10\left(x-y\right)\left(x+y\right)}\)

1 tháng 12 2019

1. Ta có:

\(\frac{1}{x}+\frac{1}{x\left(x+1\right)}+\frac{1}{\left(x+1\right)\left(x+2\right)}+...+\frac{1}{\left(x+2013\right)\left(x+2014\right)}\)

\(=\frac{1}{x}+\frac{1}{x}-\frac{1}{x+1}+\frac{1}{x+1}-\frac{1}{x+2}+...+\frac{1}{x+2013}-\frac{1}{x+2014}\)

\(=\frac{2}{x}-\frac{1}{x+2014}\)

\(=\frac{2\left(x+2014\right)}{x\left(x+2014\right)}-\frac{x}{x\left(x+2014\right)}\)

\(=\frac{2x+4028-x}{x\left(x+2014\right)}=\frac{x+4028}{x\left(x+2014\right)}\)

1 tháng 12 2019

2a) ĐKXĐ: x \(\ne\)1 và x \(\ne\)-1

b) Ta có: A = \(\frac{x^2-2x+1}{x-1}+\frac{x^2+2x+1}{x+1}-3\)

A = \(\frac{\left(x-1\right)^2}{x-1}+\frac{\left(x+1\right)^2}{x+1}-3\)

A = \(x-1+x+1-3\)

A = \(2x-3\)

c) Với x = 3 => A = 2.3 - 3 = 3

c) Ta có: A = -2

=> 2x - 3 = -2

=> 2x = -2 + 3 = 1

=> x= 1/2