K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

16 tháng 8 2017

Ta có: 

\(a^2-b=b^2-c=c^2-a\Rightarrow\hept{\begin{cases}a^2-b^2=b-c\\b^2-c^2=c-a\\c^2-a^2=a-b\end{cases}}\)\(\Rightarrow\hept{\begin{cases}a+b=\frac{b-c}{a-b}\\b+c=\frac{c-a}{b-c}\\c+a=\frac{a-b}{c-a}\end{cases}}\)

\(\Rightarrow\left(a+b\right)\left(b+c\right)\left(c+a\right)=\frac{b-c}{a-b}.\frac{c-a}{b-c}.\frac{a-b}{c-a}=1\)

17 tháng 10 2017

Ta có: \(a^2+b^2=4\Rightarrow2ab=a+b^2-4\)

                                    \(\Rightarrow2M=\frac{a+b^2-4}{a+b+2}=a+b-2\)

Ta có: \(a+b\le\sqrt{2.a^2+b^2}=2\sqrt{2}\Rightarrow M\le\sqrt{2}-1\)

Dấu \(=\)xảy ra khi và chỉ khi \(a=b=\sqrt{2}\)

Vậy: GTLN của \(M=\sqrt{2}-1\)khi \(a=b=\sqrt{2}\)

P/s: Ko chắc lắm

9 tháng 7 2017

Lần sau đăng ít 1 thôi đăng nhiều ngại làm, bn đăng nhiều nên tui hướng dẫn sơ qua thôi tự làm đầy đủ vào vở

Bài 1:

Áp dụng BĐT AM-GM ta có:

\(a^4+b^4\ge2a^2b^2;b^4+c^4\ge2b^2c^2;c^4+a^4\ge2c^2a^2\)

Cộng theo vế 3 BĐT trên rồi thu gọn

\(a^4+b^4+c^4\ge a^2b^2+b^2c^2+c^2a^2\)

Áp dụng tiếp BĐT AM-GM

\(a^2b^2+b^2c^2=b^2\left(a^2+c^2\right)\ge2b^2ac\)

Tương tự rồi cộng theo vế có ĐPCM

Bài 2:

Quy đồng  BĐT trên ta có:

\(\frac{a^2}{b^2}+\frac{b^2}{a^2}-\frac{a}{b}-\frac{b}{a}\ge0\)

\(\Leftrightarrow\frac{\left(a-b\right)^2\left(a^2+ab+b^2\right)}{a^2b^2}\ge0\) (luôn đúng)

Bài 4: Áp dụng BĐT AM-GM 

\(a^3+b^3=\left(a+b\right)\left(a^2-ab+b^2\right)\)

\(\ge\left(a+b\right)\left(2ab-ab\right)=ab\left(a+b\right)\)

\(\Rightarrow\frac{a^3+b^3}{ab}\ge\frac{ab\left(a+b\right)}{ab}=a+b\)

Tương tự rồi cộng theo vế

Bài 5: sai đề tự nhien có dấu - :v nghĩ là +

9 tháng 7 2017

ai k mình k lại [ chỉ 3 người đầu tiên mà trên 10 điểm hỏi đáp ]

 
7 tháng 7 2015

 

\(A=\left(\frac{1}{\sqrt{x-1}}+\frac{1}{\sqrt{x+1}}\right):\left(\frac{1}{\sqrt{x-1}}-\frac{1}{\sqrt{x+1}}\right)\)

\(=\left(\frac{\sqrt{x+1}}{x-1}+\frac{\sqrt{x-1}}{x-1}\right):\left(\frac{\sqrt{x+1}}{x-1}-\frac{\sqrt{x-1}}{x-1}\right)\)

\(=\frac{\sqrt{x+1}+\sqrt{x-1}}{x-1}:\frac{\sqrt{x+1}-\sqrt{x-1}}{x-1}\)

\(=\frac{\sqrt{x+1}+\sqrt{x-1}}{x-1}.\frac{x-1}{\sqrt{x+1}-\sqrt{x-1}}\)

=\(\frac{\sqrt{x+1}+\sqrt{x-1}}{\sqrt{x+1}-\sqrt{x-1}}=\frac{\left(\sqrt{x+1}-\sqrt{x-1}\right)\left(\sqrt{x+1}+\sqrt{x-1}\right)}{\left(x+1\right)-\left(x-1\right)}\)

\(=\frac{\left(\sqrt{x+1}\right)^2-\left(\sqrt{x-1}\right)^2}{x+1-x+1}=\frac{\left(x+1\right)-\left(x-1\right)}{2}\)

\(=\frac{x+1-x+1}{2}=\frac{2}{2}=1\)

3 tháng 8 2017

1. ĐK \(\hept{\begin{cases}x\ge0\\x\ne4\end{cases}}\)

a. Ta có \(R=\left(\frac{\sqrt{x}}{\sqrt{x}-2}-\frac{4}{\sqrt{x}\left(\sqrt{x}-2\right)}\right).\left(\frac{1}{\sqrt{x}+2}+\frac{4}{\left(\sqrt{x}+2\right)\left(\sqrt{x}-2\right)}\right)\)

\(=\frac{x-4}{\sqrt{x}\left(\sqrt{x}-2\right)}.\frac{\sqrt{x}-2+4}{\left(\sqrt{x}+2\right)\left(\sqrt{x}-2\right)}=\frac{\sqrt{x}+2}{\sqrt{x}}.\frac{\sqrt{x}+2}{\left(\sqrt{x}+2\right)\left(\sqrt{x}-2\right)}\)

\(=\frac{\sqrt{x}+2}{\sqrt{x}\left(\sqrt{x}-2\right)}\)

b. Với \(x=4+2\sqrt{3}\Rightarrow R=\frac{\sqrt{4+2\sqrt{3}}+2}{\sqrt{4+2\sqrt{3}}\left(\sqrt{4+2\sqrt{3}}-2\right)}=\frac{\sqrt{\left(\sqrt{3}+1\right)^2}+2}{\sqrt{\left(\sqrt{3}+1\right)^2}\left(\sqrt{\left(\sqrt{3}+1\right)^2}-2\right)}\)

\(=\frac{\sqrt{3}+1+2}{\left(\sqrt{3}+1\right)\left(\sqrt{3}-1\right)}=\frac{\sqrt{3}+3}{3-1}=\frac{\sqrt{3}+3}{2}\)

c. Để \(R>0\Rightarrow\frac{\sqrt{x}+2}{\sqrt{x}\left(\sqrt{x}-2\right)}>0\Rightarrow\sqrt{x}-2>0\Rightarrow x>4\)

Vậy \(x>4\)thì \(R>0\)

2. Ta có \(A=6+2\sqrt{2}=6+\sqrt{8};B=9=6+3=6+\sqrt{9}\)

Vì \(\sqrt{8}< \sqrt{9}\Rightarrow A< B\)

3. a. \(VT=\frac{a+b-2\sqrt{ab}}{\sqrt{a}-\sqrt{b}}:\frac{1}{\sqrt{a}+\sqrt{b}}=\frac{\left(\sqrt{a}-\sqrt{b}\right)^2}{\sqrt{a}-\sqrt{b}}.\left(\sqrt{a}+\sqrt{b}\right)\)

\(=\left(\sqrt{a}-\sqrt{b}\right).\left(\sqrt{a}+\sqrt{b}\right)=a-b=VP\left(đpcm\right)\)

b. Ta có \(VT=\left(2+\frac{\sqrt{a}\left(\sqrt{a}-1\right)}{\sqrt{a}-1}\right).\left(2-\frac{\sqrt{a}\left(\sqrt{a}+1\right)}{\sqrt{a}+1}\right)\)

\(=\left(2+\sqrt{a}\right)\left(2-\sqrt{a}\right)=4-a=VP\left(đpcm\right)\)

26 tháng 5 2015

b) 

\(A=\frac{x+2xy+y-4xy}{\sqrt{x}-\sqrt{y}}=\frac{\left(\sqrt{x}-\sqrt{y}\right)^2}{\sqrt{x}-\sqrt{y}}=\sqrt{x}-\sqrt{y}\)

\(B=\frac{x\sqrt{y}+y\sqrt{x}}{\sqrt{xy}}=\frac{\sqrt{xy}\left(\sqrt{x}+\sqrt{y}\right)}{\sqrt{xy}}=\sqrt{x}+\sqrt{y}\)