Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) \(\frac{3x+5}{2\left(x-1\right)}+\frac{4}{x-2}=\frac{\left(3x+5\right)\left(x-2\right)+4\cdot2\left(x-1\right)}{2\left(x-1\right)\left(x-2\right)}=\frac{3x^2-6x+5x-10+8x-8}{2\left(x-1\right)\left(x-2\right)}\)
\(=\frac{3x^2+7x-18}{2\left(x-1\right)\left(x-2\right)}\)
b) \(\frac{2x^2+1}{4x^2-2x}+\frac{3-3x}{1-2x}+\frac{3}{2x}=\frac{2x^2+1+4x\left(3-3x\right)+2\cdot3\left(1-2x\right)}{4x\left(1-2x\right)}=\frac{2x^2+1+12-12x+6-12x}{4x\left(1-2x\right)}\)\(=\frac{2x^2-24x+19}{4x\left(1-2x\right)}\)
Đề này... bạn xem lại đi. Chứ thế này thì dùng máy tính cũng không làm nổi T-T
\(a,\frac{x}{2\left(x-3\right)}+\frac{x}{2\left(x+1\right)}=\frac{2x}{\left(x+1\right)\left(x-3\right)}\)
\(\frac{x\left(x+1\right)}{2\left(x-3\right)\left(x+1\right)}+\frac{x\left(x-3\right)}{2\left(x+1\right)\left(x-3\right)}=\frac{4x}{2\left(x+1\right)\left(x-3\right)}\)
\(x\left(x+1\right)+x\left(x-3\right)=4x\)
\(x^2+x+x^2-3x=4x\)
\(2x^2-2x=4x\)
\(2x^2-2x-4x=0\)
\(2x\left(x-3\right)=0\)
\(2x=0\Leftrightarrow x=0\)
hoặc
\(x-3=0\Leftrightarrow x=3\)
b) \(ĐKXĐ:x\ne\pm4\)
\(5+\frac{96}{x^2-16}=\frac{2x-1}{x+4}-\frac{3x-1}{4-x}\)
\(\Leftrightarrow5+\frac{96}{x^2-16}=\frac{2x-1}{x+4}+\frac{3x-1}{x-4}\)
\(\Leftrightarrow\frac{5\left(x^2-16\right)}{x^2-16}+\frac{96}{x^2-16}=\frac{\left(2x-1\right)\left(x-4\right)}{x^2-16}+\frac{\left(3x-1\right)\left(x+4\right)}{x^2-16}\)
\(\Rightarrow5\left(x^2-16\right)+96=\left(2x-1\right)\left(x-4\right)+\left(3x-1\right)\left(x+4\right)\)
\(\Leftrightarrow5x^2-80+96=2x^2-9x+4+3x^2+11x-4\)
\(\Leftrightarrow5x^2-2x^2-3x^2+9x-11x=4-4+80-96\)
\(\Leftrightarrow-2x=-16\)\(\Leftrightarrow x=8\)( thoả mãn ĐKXĐ )
Vậy tập nghiệm của phương trình là: \(S=\left\{8\right\}\)
uuuuuuuuuuuuuuuuuuuuuuuuuuuuuu
55555555555555555
666666666666666666666666666
88888888888888888888
Cái này nhanh hơn nàk bạn:
a/ Đặt a=2x-1,b=x+1, biểu thứ trở thành:
a2 +2ab+b2
=(a+b)2
=>(2x-1+x+1)2=(3x)2=9x2
a) ĐKXĐ: \(x;y\ne0,x\ne\frac{y}{2},y\ne\frac{x}{2}\)
\(\frac{y}{2x^2-xy}+\frac{4x}{y^2-2xy}=\frac{y}{x\left(2x-y\right)}-\frac{4x}{y\left(2x-y\right)}\)\(=\frac{y^2-4x^2}{xy\left(2x-y\right)}=\frac{\left(y-2x\right)\left(y+2x\right)}{xy\left(2x-y\right)}\)
\(=\frac{-\left(y+2x\right)}{xy}\)
b) ĐKXĐ: \(x\ne2;x\ne-2\)
\(\frac{1}{x+2}+\frac{3}{x^2-4}+\frac{x-14}{\left(x^2+4x+4\right)\left(x-2\right)}\)\(=\frac{1}{x+2}+\frac{3}{\left(x-2\right)\left(x+2\right)}+\frac{x-14}{\left(x+2\right)^2\left(x-2\right)}\)
\(=\frac{\left(x-2\right)\left(x+2\right)+3\left(x+2\right)+x-14}{\left(x+2\right)^2\left(x-2\right)}\)\(=\frac{x^2-4+3x+6+x-14}{\left(x+2\right)^2\left(x-2\right)}\)\(=\frac{x^2+4x-12}{\left(x+2\right)^2\left(x-2\right)}=\frac{\left(x^2+4x+4\right)-16}{\left(x+2\right)^2\left(x-2\right)}\)\(=\frac{\left(x+2\right)^2-16}{\left(x+2\right)^2\left(x-2\right)}=\frac{\left(x+2-4\right)\left(x+2+4\right)}{\left(x+2\right)^2\left(x-2\right)}\)\(=\frac{\left(x-2\right)\left(x+6\right)}{\left(x+2\right)^2\left(x-2\right)}=\frac{x+6}{\left(x+2\right)^2}\)
\(\left(\frac{1}{x+1}-\frac{3}{x^3+1}+\frac{3}{x^2-x+1}\right)\times\frac{3x^2-3x+3}{\left(x+1\right)\left(x+2\right)}-\frac{2x-2}{x^2+2x}\)
\(=\left[\frac{x^2-x+1}{\left(x+1\right)\left(x^2-x+1\right)}-\frac{3}{\left(x+1\right)\left(x^2-x+1\right)}+\frac{3\left(x+1\right)}{\left(x+1\right)\left(x^2-x+1\right)}\right]\times\frac{3\left(x^2-x+1\right)}{\left(x+1\right)\left(x+2\right)}-\frac{2\left(x-1\right)}{x\left(x+2\right)}\)
\(=\frac{\left(x^2-x+1\right)-3+3\left(x+1\right)}{\left(x+1\right)\left(x^2-x+1\right)}\times\frac{3\left(x^2-x+1\right)}{\left(x+1\right)\left(x+2\right)}-\frac{2\left(x-1\right)}{x\left(x+2\right)}\)
\(=\frac{x^2-x+1-3+3x+3}{x+1}\times\frac{3}{\left(x+1\right)\left(x+2\right)}-\frac{2\left(x-1\right)}{x\left(x+2\right)}\)
\(=\frac{x^2+2x+1}{x+1}\times\frac{3}{\left(x+1\right)\left(x+2\right)}-\frac{2\left(x-1\right)}{x\left(x+2\right)}\)
\(=\frac{3\left(x+1\right)^2}{\left(x+1\right)\left(x+1\right)\left(x+2\right)}-\frac{2\left(x-1\right)}{x\left(x+2\right)}\)
\(=\frac{3x}{x\left(x+2\right)}-\frac{2x-2}{x\left(x+2\right)}\)
\(=\frac{3x-2x+2}{x\left(x+2\right)}\)
\(=\frac{x+2}{x\left(x+2\right)}\)
\(=\frac{1}{x}\)
=2x+\(\frac{1}{x}\)-5\(x^4\)
b) \(\frac{4\left(2x+1\right)}{\left(2x-1\right)\left(2x+1\right)}\)\(-\frac{7x+3}{\left(2x-1\right)\left(2x+1\right)}\)\(=\frac{8x+1-7x-3}{\left(2x-1\right)\left(2x+1\right)}=\frac{x-2}{\left(2x-1\right)\left(2x+1\right)}\)