Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a)
\(\begin{array}{l}M = \frac{1}{7}.(\frac{{ - 5}}{8}) + \frac{1}{7}.(\frac{{ - 11}}{8})\\ = \frac{{ - 5}}{{56}} + \frac{{ - 11}}{{56}} = \frac{{ - 16}}{{56}} = \frac{{ - 2}}{7}\end{array}\)
b)
\(\begin{array}{l}M = \frac{1}{7}.(\frac{{ - 5}}{8}) + \frac{1}{7}.(\frac{{ - 11}}{8})\\ = \frac{1}{7}.[(\frac{{ - 5}}{8}) + (\frac{{ - 11}}{8})]\\ = \frac{1}{7}.\frac{{ - 16}}{8}\\ = \frac{1}{7}.( - 2)\\ = \frac{{ - 2}}{7}\end{array}\)
1. \(A=\left(\frac{3}{2}-\frac{2}{5}+\frac{1}{10}\right):\left(\frac{3}{2}-\frac{2}{3}+\frac{1}{12}\right)=\frac{6}{5}:\frac{11}{12}=\frac{6}{5}.\frac{12}{11}=\frac{72}{55}\)
2. 2x+2 . 3x+1 . 5x = 10800
=> 2x . 22 . 3x . 3 . 5x = 10800
=> ( 2 . 3 . 5 )x . 12 = 10800
=> 30x = 900
=> 30x = 302
=> x = 2
2a) \(\frac{3^6+45^4-15^3.4^5}{27^4.25^3+45^6}\)
= \(\frac{3^6+\left(3^2.5\right)^4-\left(3.5\right)^3.\left(2^2\right)^5}{\left(3^3\right)^4.\left(5^2\right)^3+\left(3^2.5\right)^6}\)
= \(\frac{3^6+3^8.5^4-3^3.5^3.4^{10}}{3^{12}.5^6-3^{12}.5^6}=\frac{3^3.\left(3^3+3^5.5^4-5^3.4^{10}\right)}{0}\)(xem lại đề)
b) \(\frac{\left(\frac{2}{5}\right)^7.5^7+\left(\frac{16}{3}\right)^3:\left(\frac{4}{9}\right)^3}{2^7.5^2+512}\)
= \(\frac{\left(\frac{2}{5}.5\right)^7+\left(\frac{16}{3}:\frac{4}{9}\right)^3}{2^7.5^2+2^9}\)
= \(\frac{2^7+12^3}{2^7\left(5^2+2^2\right)}\)
= \(\frac{2^7+\left(2^2.3\right)^3}{2^7.29}\)
= \(\frac{2^7+2^6.3^3}{2^7.29}\)
= \(\frac{2^6\left(1+27\right)}{2^7.29}=\frac{28}{2.29}=\frac{14}{29}\)
\(\begin{array}{l}x - \frac{2}{5} = \frac{1}{2}\\x - \frac{2}{5} + \frac{2}{5} = \frac{1}{2} + \frac{2}{5}\\x = \frac{1}{2} + \frac{2}{5}\\x = \frac{5}{{10}} + \frac{4}{{10}}\\x = \frac{9}{{10}}\end{array}\)
Vậy \(x = \frac{9}{{10}}\).