K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

30 tháng 11 2015

khử các phân số đi rồi tính

23 tháng 7 2017

\(\left(\frac{1}{4.9}+\frac{1}{9.14}+\frac{1}{14.19}+....+\frac{1}{44.49}\right)\cdot\frac{1-3-5-7-....-49}{89}\)

  \(\text{Đặt }:\left(\frac{1}{4.9}+\frac{1}{9.14}+\frac{1}{14.19}+...+\frac{1}{44.49}\right)\)là \(A\)

            \(\frac{1-3-5-7-...-49}{89}\)là \(B\);ta có : 

\(A=\frac{1}{5}\cdot\left(\frac{1}{4}-\frac{1}{9}+\frac{1}{9}-\frac{1}{14}+...+\frac{1}{44}-\frac{1}{49}\right)\)

\(A=\frac{1}{5}\cdot\left(\frac{1}{4}-\frac{1}{49}\right)=\frac{1}{5}\cdot\frac{45}{196}=\frac{9}{196}\)

\(B=\frac{1-3-5-7-....-49}{89}=\frac{1-\left(3+5+7+...+49\right)}{89}\)

Tổng của \(3+5+7+...+49\)là: 

\(\frac{\left(3+49\right).24}{2}=624\)

\(\Rightarrow\frac{1-624}{89}=\frac{-623}{89}=-7\)

\(\Rightarrow\left(\frac{1}{4.9}+\frac{1}{9.14}+...+\frac{1}{44.49}\right)\cdot\frac{1-3-5-7-...-49}{89}=A.B=\frac{9}{196}\cdot-7=-\frac{9}{28}\)

25 tháng 3 2018

mk ko viết lại đề đâu

=\(\frac{1}{5}\left(\frac{1}{4}-\frac{1}{9}+\frac{1}{9}-\frac{1}{14}+...+\frac{1}{44}-\frac{1}{49}\right)\)\(.\frac{1-\left(3+5+...+49\right)}{89}\)

=\(\frac{1}{5}\left(\frac{1}{4}-\frac{1}{49}\right).\frac{\left(1-\frac{\left(49+3\right).24}{2}\right)}{89}\)

=\(\frac{1}{5}.\frac{45}{196}.\frac{1-\left(\frac{52.24}{2}\right)}{89}\)

=\(\frac{9}{196}.\left(1-\frac{624}{89}\right)=\frac{9}{196}.\left(\frac{-623}{89}\right)\)

=\(\frac{-9}{28}\)

1 tháng 9 2017

\(\left(\frac{-1}{4}+\frac{7}{33}-\frac{5}{3}\right)\) \(-\left(-\frac{15}{12}+\frac{6}{11}-\frac{48}{49}\right)\)

\(=\left(\frac{-1}{4}+\frac{7}{33}-\frac{55}{33}\right)\)\(+\frac{15}{12}-\frac{6}{11}+\frac{48}{49}\)

\(=\left(\frac{-1}{4}-\frac{48}{33}\right)\)\(+\frac{8085}{6468}\)\(-\)\(\frac{3528}{6468}\)\(+\frac{6603}{6468}\)

\(=\frac{-75}{44}\)\(+\frac{930}{539}\)\(=\frac{45}{2156}\)

Bước đến nhà em bóng xế tà

Đứng chờ năm phút bố em ra

Lơ thơ phía trước vài con chó

Lác đác đằng sau chiếc chổi chà

Sợ quá anh chuồn quên đôi dép

Bố nàng ngoác mỏ đứng chửi cha

Phen này nhất quyết thuê cây kiếm

Trở về chém ổng đứt làm ba

30 tháng 12 2017

ta có

1/5(5/36+5/126+...+5/44*49)1-3-5-7-9-...-49/89

=1/5(1/4-1/9+1/9-1/14+...+1/44-1/49)-623/89

=1/5*-7(1/4-1/49)

=-7/5*45/196

=-9/128

31 tháng 12 2017

bạn ơi 9/28 chứ không phải 9/128 đâu

31 tháng 8 2020

Bài 3 :

a) \(\left(\frac{1}{25}-0,6\right)^2:\frac{49}{125}+\left[\left(3\frac{1}{4}-6\frac{5}{9}\right)\cdot2\frac{2}{17}\right]\)

\(=\left(\frac{1}{25}-\frac{3}{5}\right)^2\cdot\frac{125}{49}+\left[\left(\frac{13}{4}-\frac{59}{9}\right)\cdot\frac{36}{17}\right]\)

\(=\left(-\frac{14}{25}\right)^2\cdot\frac{125}{49}+\left[\left(-\frac{119}{36}\right)\cdot\frac{36}{17}\right]\)

\(=-\frac{196}{625}\cdot\frac{125}{49}+\left(-7\right)=-\frac{4}{5}+\left(-7\right)=-\frac{39}{5}\)

31 tháng 8 2020

Trả lời :

\(\left(\frac{1}{25}-0,6\right)^2\div\frac{49}{125}+\left[\left(3\frac{1}{4}-6\frac{5}{9}\right)\times2\frac{2}{17}\right]\)

\(=\left(\frac{1}{25}-\frac{3}{5}\right)^2\div\frac{49}{125}+\left[\frac{-119}{36}\times\frac{36}{17}\right]\)

\(=\left(\frac{-14}{25}\right)^2\div\frac{49}{125}-7\)

\(=\frac{4}{5}-7\)

\(=\frac{-31}{5}\)

13 tháng 5 2016

Đặt \(A=\frac{1}{4.9}+\frac{1}{9.14}++\frac{1}{14.19}+......+\frac{1}{44.49}\)

\(A=\frac{1}{5}.\left(\frac{5}{4.9}+\frac{5}{9.14}+\frac{5}{14.19}+.....+\frac{5}{44.49}\right)\)

\(A=\frac{1}{5}.\left(\frac{1}{4}-\frac{1}{9}+\frac{1}{9}-\frac{1}{14}+\frac{1}{14}-\frac{1}{19}+.....+\frac{1}{44}-\frac{1}{49}\right)\)

\(A=\frac{1}{5}.\left(\frac{1}{4}-\frac{1}{49}\right)=\frac{1}{5}.\frac{45}{196}=\frac{9}{196}\)

Đặt \(B=\frac{1-3-5-7-.......47-49}{89}\)

\(B=\frac{1-\left(3+5+7+......+47+49\right)}{89}\)

Từ 3 -> 49 có: (49-3):2+1=24(số hạng)

=>\(3+5+7+....+47+49=\frac{\left(49+3\right).24}{2}=624\)

=>\(B=\frac{1-624}{89}=\frac{-623}{89}=-7\)

Vậy \(\left(\frac{1}{4.9}+\frac{1}{9.14}+\frac{1}{14.19}+....+\frac{1}{44.49}\right).\frac{1-3-5-,,,,,-49}{89}=A.B=\frac{9}{196}.\left(-7\right)=-\frac{9}{28}\)

20 tháng 11 2018

\(=\left[\frac{1}{5}\left(\frac{1}{4}-\frac{1}{9}\right)+\frac{1}{5}\left(\frac{1}{9}-\frac{1}{14}\right)+\frac{1}{5}\left(\frac{1}{14}-\frac{1}{19}\right)+...+\frac{1}{5}\left(\frac{1}{44}-\frac{1}{49}\right)\right]\cdot\frac{1-\left(3+5+...+49\right)}{89}\)

\(=\frac{1}{5}\left(\frac{1}{4}-\frac{1}{9}+\frac{1}{9}-\frac{1}{14}+\frac{1}{14}-...+\frac{1}{44}-\frac{1}{49}\right)\cdot\frac{1-\left(52+52+...+52\right)\left\{12\text{ số 52}\right\}}{89}\)

\(=\frac{1}{5}\left(\frac{1}{4}-\frac{1}{49}\right)\cdot\frac{1-624}{89}\)

\(=\frac{9}{196}\cdot-7=\frac{9}{28}\)

\(2^3+3.\left(\frac{2}{3}\right)^0-2+\left[\left(-2\right)^2:\frac{1}{2}\right]-8\)

đổi p/s \(\left(\frac{2}{3}\right)^0=1\)

xong tính trong ngoặc vuông,

r xử dụng tính chất phân phối