\(\frac{\left(A+2008\right)!+\left(A+2009\right)!}{\left(A+2008\right)!-\left(A+2009\righ...">
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

7 tháng 1 2017

Nhớ rằng \(\left(A+2009\right)!=\left(A+2009\right)\left(A+2008\right)!\).

Thu gọn thì được \(P=\frac{1+A+2009}{1-\left(A+2009\right)}=-\frac{A+2010}{A+2008}\)

\(\frac{\left(A+2008\right)+\left(A+2009\right)}{\left(A+2008\right)-\left(A+2009\right)}\)

\(=\frac{2A+4017}{-1}\)

\(=-2A-4017\)

NV
14 tháng 3 2019

\(f\left(x\right)+f\left(1-x\right)=\frac{100^x}{100^x+100}+\frac{100^{1-x}}{100^{1-x}+100}\)

Nhân cả tử và mẫu của \(\frac{100^{1-x}}{100^{1-x}+100}\) với \(100^x\) ta được:

\(f\left(x\right)+f\left(1-x\right)=\frac{100^x}{100^x+100}+\frac{100}{100+100^x}=\frac{100^x+100}{100^x+100}=1\)

Vậy: \(S=f\left(\frac{1}{2009}\right)+f\left(\frac{2008}{2009}\right)+f\left(\frac{2}{2009}\right)+f\left(\frac{2007}{2009}\right)+...+f\left(\frac{1004}{2009}\right)+f\left(\frac{1005}{2009}\right)\)

\(S=1+1+1+...+1\) (có \(\frac{2008-1+1}{2}=1004\) số 1)

\(S=1004\)

12 tháng 11 2016

a)\(\frac{2-x}{2007}-1=\frac{1-x}{2008}-\frac{x}{2009}\)

\(\Leftrightarrow\frac{2-x}{2007}-1+2=\frac{1-x}{2008}+1-\frac{x}{2009}+1\)

\(\Leftrightarrow\frac{2-x}{2007}+\frac{2007}{2007}=\frac{1-x}{2008}+\frac{2008}{2008}-\frac{x}{2009}+\frac{2009}{2009}\)

\(\Leftrightarrow\frac{2009-x}{2007}=\frac{2009-x}{2008}-\frac{2009-x}{2009}\)

\(\Leftrightarrow\frac{2009-x}{2007}-\frac{2009-x}{2008}+\frac{2009-x}{2009}=0\)

\(\Leftrightarrow\left(2009-x\right)\left(\frac{1}{2007}-\frac{1}{2008}+\frac{1}{2009}\right)=0\)

\(\Leftrightarrow2009-x=0\).Do \(\frac{1}{2007}-\frac{1}{2008}+\frac{1}{2009}\ne0\)

\(\Leftrightarrow x=2009\)

b)\(\left(12x+7\right)^2\left(3x+2\right)\left(2x+1\right)=3\)

\(\Leftrightarrow\left(12^2x^2+2\cdot12\cdot7x+7^2\right)\left(6x^2+7x+2\right)-3=0\)

\(\Leftrightarrow\left[24\left(6x^2+7x+2\right)+1\right]\left(6x^2+7x+2\right)-3=0\)

Đặt \(t=6x^2+7x+2\) ta có:

\(\left(24t+1\right)t-3=0\)\(\Leftrightarrow12t^2+t-3=0\)

Suy ra t rồi tìm đc x

16 tháng 11 2016

VD: 

INPUT: 4 

OUTPUT: 

1

1   1

1    2    1

1    3    3    1

1    4    6     4     1

21 tháng 5 2017

b,  B=(2+1)(22+1)(24+1)(28+1)(216+1)-232

=(24-1)(24+1)(28+1)(216+1)-232

=(28-1)(28+1)(216+1)-232

=(216-1)(216+1)-232

=232-1-232

=-1

19 tháng 5 2020

a sai nha ! đọc ko kĩ đề !

19 tháng 5 2020

uh

28 tháng 9 2019

a ) \(4\left(x+5\right)-3\left|2x-1\right|=0\)

\(\Leftrightarrow3\left|2x-1\right|=4\left(x+5\right)\)

\(\Leftrightarrow\left|2x-1\right|=\frac{4}{3}\left(x+5\right)\left(ĐK:x\ge-5\right)\)

\(\Leftrightarrow\orbr{\begin{cases}2x-1=\frac{4}{3}\left(x+5\right)\\2x-1=-\frac{4}{3}\left(x+5\right)\end{cases}}\)

\(\Leftrightarrow\orbr{\begin{cases}2x-1=\frac{4}{3}x+\frac{20}{3}\\2x-1=-\frac{4}{3}x-\frac{20}{3}\end{cases}}\)

\(\Leftrightarrow\orbr{\begin{cases}\frac{2}{3}x=-\frac{23}{3}\\\frac{2}{3}x=-\frac{17}{3}\end{cases}}\)

\(\Leftrightarrow\orbr{\begin{cases}x=-\frac{23}{2}\left(l\right)\\x=-\frac{17}{10}\left(n\right)\end{cases}}\)

Vậy \(x=-\frac{17}{10}\)

b ) \(\frac{2-x}{2007}-1=\frac{1-x}{2008}-\frac{x}{2009}\)

\(\Leftrightarrow\frac{2-x}{2007}+1=\left(\frac{1-x}{2008}+1\right)+\left(1-\frac{x}{2009}\right)\)

\(\Leftrightarrow\frac{2009-x}{2007}=\frac{2009-x}{2008}=\frac{2009-x}{2009}\)

\(\Leftrightarrow\left(2009-x\right)\left(\frac{1}{2007}-\frac{1}{2008}-\frac{1}{2009}\right)=0\)

\(\Leftrightarrow2009-x=0\left(\frac{1}{2007}-\frac{1}{2008}-\frac{1}{2009}\ne0\right)\)

\(\Leftrightarrow x=2019\)

Vậy phương trình có nghiệm \(x=2019\)

c ) \(x^4+4x^2-5=0\)

\(\Leftrightarrow x^4-x^2+5x^2-5=0\)

\(\Leftrightarrow x^2\left(x^2-1\right)+5\left(x^2-1\right)=0\)

\(\Leftrightarrow\left(x^2+5\right)\left(x^2-1\right)=0\)

\(\Leftrightarrow\left(x^2+5\right)\left(x-1\right)\left(x+1\right)=0\)

\(\Leftrightarrow\orbr{\begin{cases}x^2+5=0\left(l\right)\\x=1\end{cases}}\)

            \(x=-1\)

Vậy \(x=1\) hoặc \(x=-1\)

Chúc bạn học tốt !!!