Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) ( x - 2 )3 - x( x + 1 )( x - 1 ) + 6x( x - 3 )
= x3 - 6x2 + 12x - 8 - x( x2 - 1 ) + 6x2 - 18x
= x3 - 6x - 8 - x3 + x
= -5x - 8
b) ( x + 1 )3 - ( x - 1 )3 - 6( x - 1 )2
= x3 + 3x2 + 3x + 1 - ( x3 - 3x2 + 3x - 1 ) - 6( x2 - 2x + 1 )
= x3 + 3x2 + 3x + 1 - x3 + 3x2 - 3x + 1 - 6x2 + 12x - 6
= 12x - 4
c) ( 2x + 1 )( 4x2 - 2x + 1 ) + ( 2 - 3x )( 4 + 6x + 9x2 ) - 9
= ( 2x )3 + 13 + 23 - ( 3x )3 - 9
= 8x3 + 1 + 8 - 27x3 - 9
= -19x3
d) ( x + 1 )3 + ( x - 1 )3 + x3 - 3x( x - 1 )( x + 1 )
= x3 + 3x2 + 3x + 1 + x3 - 3x2 + 3x - 1 + x3 - 3x( x2 - 1 )
= 3x3 + 6x - 3x2 + 3x
= 9x
a) \(=x^2-2x+3-2x-x^2-2+4x=1\)
b)\(=6x+10x^2-6x+2x=10x^2+2x=2x\left(5x+1\right)\)
c)\(=3x^{n-2}.x^{n+2}-3x^{n-2}.y^{n+2}+y^{n+2}.3x^{n-2}-y^{n+2}.y^{n-2}\)
\(=3x^{2n}-y^{2n}\)
Bài 1
a) (x5 + 4x3 - 6x2) : 4x2
= 4x2(\(\dfrac{1}{4}\)x3 + x - \(\dfrac{3}{2}\)) : 4x2
= \(\dfrac{1}{4}\)x3 + x - \(\dfrac{3}{2}\)
b) (x3 - 8) : (x2 + 2x + 4)
= (x - 2)(x2 + 2x + 4) : (x2 + 2x + 4)
= x - 2
c) (3x2 - 6x) : (2 - x)
= -(6x - 3x2) : (2 - x)
= -3x(2 - x) : (2 - x)
= -3x
d) (x3 + 2x2 - 2x - 1) : (x2 + 3x + 1)
= [(x3 - 1) + (2x2 - 2x)] : (x2 + 3x + 1)
= [(x - 1)(x2 + x + 1) + 2x(x - 1)] : (x2 + 3x + 1)
= (x - 1)(x2 + x + 1 + 2x) : (x2 + 3x + 1)
= (x - 1)(x2 + 3x + 1) : (x2 + 3x + 1)
= x - 1
Bài 2
a) (x - 4)2 - (x - 2)(x + 2) = 6
x2 - 8x + 16 - (x2 - 4) = 6
x2 - 8x + 16 - x2 + 4 = 6
-8x + 20 = 6
\(\Rightarrow\) -8x = - 14
\(\Rightarrow\) x = \(\dfrac{7}{4}\)
b) 9(x + 1)2 - (3x - 2)(3x + 2) = 10
9(x2 + 2x + 1) - (9x2 - 4) = 10
9x2 + 18x + 9 - 9x2 + 4 = 10
18x + 13 = 10
\(\Rightarrow\) 18x = -3
\(\Rightarrow\) x = \(\dfrac{-1}{6}\)
Nhớ tik mik nha
không lần sau mik ko giúp đâu
AK... có j ko hiểu thì bn cứ bình luận bên dưới
Rút gọn các phân thức:
a) \(\frac{\left(3x+2\right)^2-\left(x+2\right)^2}{x^3-x^2}=\frac{9x^2+12x+4-x^2-4x-4}{x^3-x^2}=\frac{8x^2+8x}{x^3-x^2}=\frac{8x\left(x+1\right)}{x^2\left(x-1\right)}=\frac{8\left(x+1\right)}{x-1}\)
b) \(\frac{x^4-1}{x^3+2x^2-x-2}=\frac{\left(x^2-1\right)\left(x^2+1\right)}{\left(x^3-x\right)+\left(2x^2-2\right)}=\frac{\left(x^2-1\right)\left(x^2+1\right)}{\left(x+2\right)\left(x^2-1\right)}=\frac{x^2+1}{x+2}\)
c) \(\frac{x^2+7x+12}{x^2+5x+6}=\frac{\left(x^2+3x\right)+\left(4x+12\right)}{\left(x^2+3x\right)+\left(2x+6\right)}=\frac{\left(x+3\right)\left(x+4\right)}{\left(x++3\right)\left(x+2\right)}=\frac{x+4}{x+2}\)
d) \(\frac{x^{10}-x^8+x^6-x^4+x^2-1}{x^4-1}=\frac{\left(x^{10}-x^8\right)+\left(x^6-x^4\right)+\left(x^2-1\right)}{\left(x^2-1\right)\left(x^2+1\right)}=\frac{\left(x^2-1\right)\left(x^8+x^4+1\right)}{\left(x^2-1\right)\left(x^2+1\right)}=\frac{x^8+x^4+1}{x^2+1}\)
a)x3-7x+6
=x3+0x2-7x+6
=x3-x2+x2-x-6x+6
=(x3-x2)+(x2-x)-(6x-6)
=x2(x-1)+x(x-1)-6(x-1)
=(x-1)(x2+x-6)
=(x-1)(x2-2x+3x-6)
=(x-1)[x(x-2)+3(x-2)]
=(x-1)(x+3)(x-2)
a) \(6x^n:x^2-6x^n+2x.3x^{n-1}+2x\)
\(=6x^{n-2}-6x^n+6x^{n-1+1}+2x\)
\(=6x^{n-2}+2x\)
b) \(6^6-4^3.3^6+4^3\)
\(=6^6-\left(2^2\right)^3.3^6+4^3\)
\(=6^6-2^6.3^6+4^3\)
\(=6^6-\left(2.3\right)^6+4^3=4^3\)
c) \(10-x-x^3-x^2+x+x^2+x^3\)
\(=10\)