K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

19 tháng 6 2020

Dài ... quá :))

A(x) = x3 - 2x + 3x2 - 3/2x + x4 - x3 + 5x - 7 - 0,7x2 + 2x4 - 3/4

       = (x3 - x3) + (-2x - 3/2x + 5x) + (3x2 - 0,7x2) + (x4 + 2x4) + (-7 - 3/4)

       = 3/2x + 2,3x2 + 3x4 - 31/4

Sắp xếp : A(x) =  3x4 + 0x3 + 2,3x2 + 3/2x - 31/4

b(x) = 3x5 - 12x3 - 6x2 + 2x5 - 2x4 + 4x2 + x5 - 2x4

       = (3x5 + x+ 2x5)  - 12x3 + (-6x2 + 4x2) + (-2x4 - 2x4)

       = 6x5 - 12x3 - 2x2 - 4x4

Sắp xếp : B(x) = 6x5 - 4x4 - 12x3 - 2x2

Tính :

h(x) = a(x) + b(x)

=> h(x) = (3x4 + 0x3 + 2,3x2+ 3/2x - 31/4) + (6x5 - 4x4 - 12x3 - 2x2)

=> h(x) = 3x4 + 0x3 + 2,3x2 + 3/2x - 31/4 + 6x5 - 4x4 - 12x3 - 2x2

=> h(x) = (3x4 - 4x4) + (0x3 - 12x3) + (2,3x2 - 2x2) + 3/2x - 31/4 + 6x5

=> h(x) = -x4 - 12x3 + 0,3x2 + 3/2x - 31/4 + 6x5

Còn bài trừ tương tự nhưng đổi dấu vế thứ hai thôi ...

22 tháng 8 2023

a) \(...=P\left(x\right)=2x^4-x^4+3x^3+4x^2-3x^2+3x-x+3\)

\(P\left(x\right)=x^4+3x^3+x^2+2x+3\)

\(...=Q\left(x\right)=x^4+x^3+3x^2-x^2+4x+4-2\)

\(Q\left(x\right)=x^4+x^3+2x^2+4x+2\)

b) \(P\left(x\right)+Q\left(x\right)=\left(x^4+3x^3+x^2+2x+3\right)+\left(x^4+x^3+2x^2+4x+2\right)\)

\(\Rightarrow P\left(x\right)+Q\left(x\right)=2x^4+4x^3+3x^2+6x+5\)

\(P\left(x\right)-Q\left(x\right)=\left(x^4+3x^3+x^2+2x+3\right)-\left(x^4+x^3+2x^2+4x+2\right)\)

\(\)\(\Rightarrow P\left(x\right)-Q\left(x\right)=x^4+3x^3+x^2+2x+3-x^4-x^3-2x^2-4x-2\)

\(\Rightarrow P\left(x\right)-Q\left(x\right)=2x^3-x^2-2x+1\)

10 tháng 4 2020

dsssws

a: P(x)=4x^5-4x^5-2x^3+x^4-3x^2+4x^2+3x-5x+1

=x^4-2x^3+x^2-2x+1

Q(x)=x^7-x^7-2x^6+2x^6+2x^3-2x^4+2x^4+x^5-x^5-x+5

=2x^3-x+5

b: P(x)+Q(x)

=x^4-2x^3+x^2-2x+1+2x^3-x+5

=x^4+x^2-3x+6

P(x)-Q(x)

=x^4-2x^3+x^2-2x+1-2x^3+x-5

=x^4-4x^3+x^2-x-4

1: \(A=5x^5-5x^3+7x^2-2x+4\)

\(B\left(x\right)=-5x^6+2x^4+4x^3+4x^2-4x-1\)

2: \(A\left(x\right)+B\left(x\right)=5x^5-5x^3+7x^2-2x+4-5x^6+2x^4+4x^3+4x^2-4x-1\)

\(=-5x^6+5x^5+2x^4-x^3+11x^2-6x+3\)

\(A\left(x\right)-B\left(x\right)\)

\(=5x^5-5x^3+7x^2-2x+4+5x^6-2x^4-4x^3-4x^2+4x+1\)

\(=5x^6+5x^5-2x^4-9x^3+3x^2+2x+5\)

26 tháng 4 2018

F(x) = 2x5 + 3x3 - 4x4 + 5x - x2 + x3 + x1

F(x) = 2x5 -4x4 + ( 3x3 + x3 ) -x2 + ( 5x+x)

F(x) = 2x5 - 4x4 + 4x3 - x2 + 6x

G(x) = -x2 - x5 + 2x4 - 3x3 + x4 +7

G(x) = -x5 + ( 2x4 + x4) -x2 +7

G ( x) = -x5 + 3x4 -x2 +7

26 tháng 4 2018

a,F(x)= 2x\(^5\) + 3x\(^3\) - 4x\(^4\) + 5x - x\(^2\) + x\(^3\) + x\(^1\)

=2x\(^5\)- 4x\(^4\) \(+4x^3\)\(-x^2+6x\)

G(x)= -x\(^2\) - x\(^5\) + 2x\(^4\) - 3x\(^3\) + x\(^4\) + 7

=\(-x^5\)\(+3x^4\)\(-3x^3\)\(-x^2\)+7

b,F(x)-G(x)=(2x\(^5\)- 4x\(^4\) \(+4x^3\)\(-x^2+6x\))-\((-x^5+3x^4-3x^3-x^2+7)\)

=\(2x^5-4x^4+4x^3-x^2+6x\) \(+x^5-3x^4\)\(+3x^3\)\(+x^2-7\)

=\(\left(2x^5+x^5\right)\)+\(\left(-4x^4-3x^4\right)\)+\(\left(4x^3+3x^3\right)\)\(\left(-x^2+x^2\right)\)+6x-7

=\(3x^5-7x^4\)\(+7x^3+6x-7\)

`@` `\text {Ans}`

`\downarrow`

`a)`

\(P(x) = 5x^3 + 3 - 3x^2 + x^4 - 2x - 2 + 2x^2 + x\)

`= x^4 + 5x^3 + (-3x^2 + 2x^2) + (-2x+x) + (3-2)`

`= x^4 + 5x^3 - x^2 - x + 1`

\(Q(x) = 2x^4 + x^2 + 2x + 2 - 3x^2 - 5x + 2x^3 - x^4\)

`= (2x^4 - x^4) + 2x^3 + (x^2 - 3x^2) + (2x-5x) + 2`

`= x^4 + 2x^3 - 2x^2 - 3x +2`

`b)`

`P(x)+Q(x) = (x^4 + 5x^3 - x^2 - x + 1) + (x^4 + 2x^3 - 2x^2 - 3x +2)`

`= x^4 + 5x^3 - x^2 - x + 1 + x^4 + 2x^3 - 2x^2 - 3x +2`

`= (x^4+x^4)+(5x^3 + 2x^3) + (-x^2 - 2x^2) + (-x-3x) + (1+2)`

`= 2x^4 + 7x^3 - 3x^2 - 4x + 3`

`P(x)-Q(x)=(x^4 + 5x^3 - x^2 - x + 1) - (x^4 + 2x^3 - 2x^2 - 3x +2)`

`= x^4 + 5x^3 - x^2 - x + 1 - x^4 - 2x^3 + 2x^2 + 3x -2`

`= (x^4 - x^4) + (5x^3 - 2x^3) + (-x^2+2x^2)+(-x+3x)+(1-2)`

`= 3x^3 + x^2 + 2x - 1`

`Q(x)-P(x) = (x^4 + 2x^3 - 2x^2 - 3x +2)-(x^4 + 5x^3 - x^2 - x + 1)`

`= x^4 + 2x^3 - 2x^2 - 3x +2-x^4 - 5x^3 + x^2 + x - 1`

`= (x^4-x^4)+(2x^3 - 5x^3)+(-2x^2+x^2)+(-3x+x)+(2-1)`

`= -3x^3 - x^2 - 2x + 1`

`@` `\text {Kaizuu lv u.}`

28 tháng 4 2022

Thu gọn và sắp  xếp các đa thức trên theo lũy thừa giảm dần của biến :

\(P\left(x\right)=3x^4-2x^3+3x+11\)

\(Q\left(x\right)=-3x^4+2x^3+2x+4\)

Tính :

\(P\left(x\right)+Q\left(x\right)=3x^4-2x^3+3x+11-3x^4+2x^3+2x+4\)

                      \(=5x+15\)

Đặt \(h\left(x\right)=0\)

\(\Rightarrow5x+15=0\)

\(\Rightarrow5x=-15\)

\(\Rightarrow x=-3\)

Vậy \(x=-3\) là nghiệm của h(x)

a: \(A\left(x\right)=5x^5-4x^4-2x^3+4x^2+3x+6\)

\(B\left(x\right)=-x^5+2x^4-2x^3+3x^2-x+4\)

b: \(A\left(x\right)+B\left(x\right)=4x^5-2x^4-4x^3+7x^2+2x+10\)

\(A\left(x\right)-B\left(x\right)=6x^5-6x^4+x^2+4x+2\)

18 tháng 6 2020

f(x) = x2 - x + 5 - ( 4x2 + x3 - 4x + 3 )

      = x2 - x + 5 - 4x2 - x3 + 4x - 3

      = -x3 - 3x2 + 3x - 2

g(x) = -( 2x2 - 4x + 1 ) - ( -3x3 + 5x2 - 2 )

       = -2x2 + 4x - 1 + 3x3 - 5x2 + 2

      = 3x3 - 7x2 + 4x + 1

h(x) - g(x) = f(x)

h(x) = f(x) + g(x)

        =  -x3 - 3x2 + 3x - 2 + 3x3 - 7x2 + 4x + 1

        = 2x3 - 10x2 + 7x - 1