Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Thu gọn đa thức
B(x) = x3y4 - 5y8 + x3y4 + xy4 + x3 - y2 - xy4 + 5y8
= 3x3y4 + x3 - y2
Bậc của đa thức là 7. Chọn B
\(A=\left(-\dfrac{2}{3}x^3y^4\right)^2.\left(-3x^5y^2\right)^3\)
\(A=\left(\dfrac{4}{9}x^6y^8\right).\left(-27x^{15}y^6\right)\)
\(A=\left(\dfrac{4}{9}.-27\right)\left(x^6.x^{15}\right)\left(y^8.y^{16}\right)\)
\(A=-12x^{21}y^{24}\)
\(\text{Hệ số:-12}\)
\(\text{Bậc:45}\)
\(B=\left(3x^2y\right).\left(-\dfrac{1}{3}x^3y\right).\left(-\dfrac{1}{4}x^3y^4\right)\)
\(B=\left(3.-\dfrac{1}{3}.-\dfrac{1}{4}\right).\left(x^2.x^3.x^3\right).\left(y.y.y^4\right)\)
\(B=\dfrac{1}{4}x^8y^6\)
\(\text{Hệ số:}\dfrac{1}{4}\)
\(\text{Bậc:14}\)
a) Thu gọn và sắp xếp:
\(P\left(x\right)=2x^3-9x^2+5-4x^3+7x\)
\(P\left(x\right)=\left(2x^3-4x^3\right)-\left(9x^2+2x^2\right)+7x+5\)
\(P\left(x\right)=-2x^3-11x^2+7x+5\)
b) Thay x=1 vào đa thức P(x) ta được:
\(P\left(x\right)=\left(-1\right)^4-\left(-1\right)^3-\left(-1\right)-2=1\)
Khi x = - 1; y = 1 thì xy = (-1).1= -1
Ta có: xy – x2y2 + x3y3 – x4y4 + x5y5 – x6.y6
= xy – (xy)2 + (xy)3 – (xy)4 + (xy)5 – (xy)6
= -1 – (-1)2 + (-1)3 – (-1)4 + (-1)5 - (-1)6
= -1 – 1 + (-1) – 1 + (-1) – 1
= - 6
Chọn đáp án D
a. Ta có:
f(x) = x3 - 3x2 + 2x - 5 + x2 = x3 -2x2 + 2x- 5
Bậc của đa thức f(x) là 3 (0.5 điểm)
g(x) = -x3 - 5x + 3x2 + 3x + 4 = -x3 + 3x2 - 2x + 4
Bậc của đa thức g(x) là 3 (0.5 điểm)
\(A=5x^2y-xy^2+4xy+6\) bậc : 3
a)\(B=-5x^2y+xy^2-4xy-6\)
b)\(=>C=-2xy+1-5x^2y+xy^2-4xy-6\)
\(C=-5x^2y+xy^2-6xy-5\)
x3y4 - 5y8 + x3y4 + xy4 + x3 - y2 - xy4 + 5y8
= (x3y4 + x3y4) + (xy4 – xy4) + (-5y8 + 5y8) + x3 – y2
= (1+ 1)x3y4 + (1 – 1).xy4 + ( - 5+ 5)y8 + x3 – y2
= 2x3y4 + x3 - y2.
Đa thức có bậc là 7.