Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
1.
a)\(\left(\dfrac{1}{2}\cdot\left(-2\right)\cdot\dfrac{-1}{3}\right)\cdot\left(x^2\cdot x^2\cdot x^2\right)\cdot\left(y^2\cdot y^3\right)\cdot z\)
\(\dfrac{1}{3}x^6y^5z\)
Deg=12
Nhóm 1:-5x\(^2\)yz;\(\dfrac{2}{3}\)x\(^2\)yz
Nhóm 2:3xy\(^2\)z;-\(\dfrac{2}{3}\)xy\(^2\)z
Nhóm 3:10x\(^2\)y\(^2\)z;\(\dfrac{5}{7}\)x\(^2\)y\(^2\)z
a) \(-\dfrac{2}{3}xy^2z.\left(-3x^2y\right)^2\)
= \(-\dfrac{2}{3}xy^2z.9x^4y^2\)
= \(-6x^5y^4z\)
b) \(x^2yz.\left(2xy\right)^2z\)
= \(x^2yz.4x^2y^2z\)
= \(4x^4y^3z^2\)
a ) \(A=\left(-\frac{3}{7}x^2y^2z\right).\left(-\frac{42}{9}xy^2z^2\right)\)
\(=\left[\left(-\frac{3}{7}\right).\left(-\frac{42}{9}\right)\right]\left(x^2y^2z.xy^2z^2\right)\)
\(=2x^3y^4z^3\)
b ) \(A=2x^3y^4z^3\)có hệ số là 2 ; bậc là 10
c ) Thay x = 2; y = 1; z = - 1 vào biểu thức A ta được :
\(A=2.2^3.1^4.\left(-1\right)^3=2.8.\left(-1\right)=-16\)
Vậy giá trị của biểu thức A là - 16 tại x = 2; y = 1; z = - 1
a) 2x2yz + 4xy2z - 5x2yz + xy2z - xyz
= (2x2yz-5x2yz)+(4xy2z+xy2z)-xyz
= -3x2yz + 5xy2z - xyz
b) x3-5xy+3x3+xy-x2+\(\dfrac{1}{2}\)xy-x2
= (x3+3x3)+(xy-5xy+\(\dfrac{1}{2}\)xy)-(x2+x2)
= 4x3-\(\dfrac{7}{2}\)xy-2x2
a,\(\Leftrightarrow2X^3Y^4Z^3\)
b,hệ số:\(2\)
biến:\(X^3Y^4Z^3\)
c,thay x=2,y=1,z=-1;ta có PT:
\(2.2^3.1^4.\left(-1\right)^3\)
\(\Leftrightarrow-16\)
Thu gọn đơn thức:
(-x^2y)^3.1/2x^2y^3.(-42/9xy^2z^2)
=(-x^6y^3).1/2x^2y^3.(-42/9xy^2z^2)
=(-1.1.-42/9).(x^6.x^2.x).(y^3.y^3.y^2).z^2
=42/9.x^9.y^8.z^2
Bậc của đơn thức:19
\(\left(-x^2y\right)^3.\dfrac{1}{2}x^2y^3.\left(\dfrac{-42}{9}xy^2z^2\right)\)
\(=\left(\dfrac{1}{2}.\dfrac{-42}{9}\right)\left(x.x^2.x\right).\left(y^3.y^3.y^2.\right).z^2\)
\(=\dfrac{-7}{3}x^4y^8z^2\)
=> Bậc của đơn thức là : 4 + 8 + 2 = 14
\(M=\frac{-2}{7}x^4y\cdot\left(-\frac{21}{10}\right)xy^2z^2=\left(-\frac{2}{7}\cdot-\frac{21}{10}\right)\left(x^4x\right)\left(yy^2\right)z^2=\frac{3}{5}x^5y^3z^2\)
Hệ số 3/5
\(N=-16x^2y^2z^4\cdot\left(-\frac{1}{4}\right)xy^2z=\left(-16\cdot-\frac{1}{4}\right)\left(x^2x\right)\left(y^2y^2\right)\left(z^4z\right)=4x^3y^4z^5\)
Hệ số 4
Làm nốt b Quỳnh đag lm dở.
Ta có \(P\left(x\right)=C\left(x\right)+D\left(x\right)\)
\(P\left(x\right)=2x^4+2x-6x^2-x^3-3+4x^2+x^3-2x^2-2x^4-2x+5x^2+1\)
\(P\left(x\right)=x^2-2\)
Ta có : \(P\left(x\right)=x^2-2=0\)
\(\Leftrightarrow x^2=2\Leftrightarrow x=\pm\sqrt{2}\)
\(Q=\dfrac{1}{3}xy^2\cdot z\cdot9x^4y^2=3x^5y^4z=3\cdot1\cdot1\cdot1=3\)
`A=xy^2z^3×(-5x^2y^3)×(-x^2z^2)^3`
`=xy^2z^3xx(-5x^2y^3)xx(-x^6z^6)`
`=5x^{1+2+6}y^{2+3}z^{3+6}`
`=5x^9y^5z^9`