Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(A=-2xy^2+xy^2+\dfrac{1}{3}x^3y-\dfrac{1}{3}x^3y-x+x-4x^2y=-xy^2-4x^2y\)
bậc là 3
Thu gọn đa thức:
\(C=-\dfrac{1}{2}x^2y-2xy+\dfrac{1}{2}x^2y-xy+xy-\dfrac{1}{3}x+\dfrac{1}{2}+x-0,25\)
\(=x^2y\left(-\dfrac{1}{2}+\dfrac{1}{2}\right)+xy\left(-2-1+1\right)+x\left(-\dfrac{1}{3}+1\right)+\dfrac{1}{2}-\dfrac{1}{4}\)
\(=-2xy+\dfrac{2}{3}x+\dfrac{1}{4}\)
\(B=\dfrac{3}{4}xy^2-\dfrac{1}{3}x^2y-\dfrac{5}{6}xy^2+2x^2y=-\dfrac{1}{12}xy^2+\dfrac{5}{3}x^2y\)
Bậc:3
Thay x=-1, y=1 vào B ta có:
\(B=-\dfrac{1}{12}xy^2+\dfrac{5}{3}x^2y=-\dfrac{1}{12}.\left(-1\right).1^2+\dfrac{5}{3}.\left(-1\right)^2.1=\dfrac{1}{12}+\dfrac{5}{3}=\dfrac{7}{4}\)
\(a.M+(5x^2-2xy)=6x^2+9xy-y^2
\)
\(M=(6x^2+9xy-y^2)-(5x^2-2xy)\)
\(M=6x^2+9xy-y^2-5x^2+2xy\)
\(M=(6x^2-5x^2)+(9xy+2xy)-y^2\)
\(M=x^2+11xy-y^2\)
Vậy \(M=x^2+11xy-y^2\)
\(b.M+(3x^2y-2xy^3)=2x^2y-4xy^3\)
\(M=(2x^2y-4xy^3)-(3x^2-2xy^3)\)
\(M=
\) \(2x^2-4xy^3-3x^2+2xy^3\)
\(M=(2x^2-3x^2)+(-4xy^3+2xy^3)\)
\(M=-x^2-2xy^3\)
Vậy \(M=-x^2-2xy^3\)
a) M + (5x\(^2\) - 2xy) = 6x\(^2\) + 9xy - y\(^2\)
=> M = (6x\(^2\) + 9xy - y\(^2\)) - (5x\(^2\) - 2xy)
M = 6x\(^2\) + 9xy - y\(^2\) - 5x\(^2\) + 2xy
M = (6x\(^2\) - 5x\(^2\)) + (9xy + 2xy) - y\(^2\)
M = 1x\(^2\) + 11xy - y\(^2\)
\(A=x^3.\left(-\dfrac{5}{4}x^2y\right).\left(\dfrac{2}{5}x^3y^4\right).\\ A=-\dfrac{1}{2}x^8y^5.\)
- Bậc: 8.
- Hệ số: \(-\dfrac{1}{2}.\)
- Biến: \(x;y.\)
\(B=\left(-\dfrac{3}{4}x^5y^4\right).\left(xy^2\right).\left(-\dfrac{8}{9}x^2y^3\right).\\ B=\dfrac{2}{3}x^8y^9.\)
- Bậc: 9.
- Hệ số: \(\dfrac{2}{3}.\)
- Biến: \(x;y.\)
1.
a)\(\left(\dfrac{1}{2}\cdot\left(-2\right)\cdot\dfrac{-1}{3}\right)\cdot\left(x^2\cdot x^2\cdot x^2\right)\cdot\left(y^2\cdot y^3\right)\cdot z\)
\(\dfrac{1}{3}x^6y^5z\)
Deg=12
= \(\left(\dfrac{-1}{2}xy^2z-\dfrac{2}{3}xy^2z+xy^2z\right)+\left(3x^2y^2-\dfrac{1}{3}x^2y^2\right)+2xy^2\)
= \(\dfrac{-1}{6}xy^2z+\dfrac{8}{3}x^2y^2+2xy^2\)
Thay x = -2, y = 1, z = 3 vào biểu thức, có:
\(\dfrac{-1}{6}.\left(-2\right).1^2.3+\dfrac{8}{3}.\left(-2\right)^2.1^2+2\left(-2\right).1^2\)
= 1 + \(\dfrac{32}{3}\) - 4
= \(\dfrac{23}{3}\)
Vậy GTBT trên là \(\dfrac{23}{3}\)tại x = -2, y = 1, z = 3
A=15x2y2+7x2-8x3y2-12x2+11x3y2-12x2y2
= (15x2y2-12x2y2)+(7x2-12x2)+(-8x3y2+11x3y2)
= 3x2y2-5x2+3x3y2
Bậc của đa thức A: 5
Hệ số cao nhất: 3
B= \(3x^5y+\dfrac{1}{3}xy^4+\dfrac{3}{4}x^2y^3-\dfrac{1}{2}x^5y+2xy^4-x^2y^3\)
=\(\left(3x^5y-\dfrac{1}{2}x^5y\right)+\left(\dfrac{1}{3}xy^4+2xy^4\right)+\left(\dfrac{3}{4}x^2y^3-x^2y^3\right)\)
= 2,5x5y+\(\dfrac{7}{3}\)xy4-\(\dfrac{1}{4}\)x2y3
Bậc của đa thức B: 6
Hệ số cao nhất : \(\dfrac{7}{3}\)
a, Thay x = 1/2 ; y = -1/3 ta được
\(A=\dfrac{3.1}{8}\left(-\dfrac{1}{3}\right)+\dfrac{6.1}{4}.\left(\dfrac{1}{9}\right)+\dfrac{3.1}{2}\left(-\dfrac{1}{3}\right)^3\)
\(=-\dfrac{1}{8}+\dfrac{1}{12}+\dfrac{3}{2\left(-27\right)}=-\dfrac{7}{72}\)
b, Thay x = -1 ; y = 3 ta được
\(B=9+\left(-1\right).3-1+27=32\)
bạn thay chỗ nào x là \(\dfrac{1}{2}\) còn chỗ nào y là \(\dfrac{-1}{3}\)nhé
còn như là 3\(x^3\)y thì thành là 3.\(x^3\).y nhé
mk lười nên ko giải ra cho bạn được
\(D=xy^3\left(-4-\dfrac{1}{3}-2\right)+x^2y\left(6+1\right)-\dfrac{7}{2}x^3y=-\dfrac{19}{3}xy^3+7x^2y-\dfrac{7}{2}x^3y\)