Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
1. Thu gọn các đơn thức sau rồi tìm hệ số và bậc của nó :
a) \(\left(-2xy^3\right)\left(\dfrac{1}{3}xy\right)^2\)
\(=\left(-2.\dfrac{1}{9}\right)\left(x.x^2\right)\left(y^3.y^2\right)\)
\(=\dfrac{-2}{9}x^3y^5\)
Hệ số : \(\dfrac{-2}{9}\)
Bậc : 8
b) \(\left(-18x^2y^2\right)\left(\dfrac{1}{6}ax^2y^3\right)\)
\(=\left(-18.\dfrac{1}{6}a\right)\left(x^2.x^2\right)\left(y^2.y^3\right)\)
\(=-3ax^4y^5\)
Hệ số : \(-3a\)
Bậc : 9
c) \(3x^2yz\left(-xy\right)\left(\dfrac{-2}{3}xy^2z^3\right)\)
\(=\left(3.\dfrac{-2}{3}\right).\left(x^2.-x.x\right)\left(y.y.y^2\right).z^3\)
\(=-2x^4y^4x^3\)
Hệ số : -2
Bậc : 11
d) \(\left(-3x^2y\right)^2xz^2.\dfrac{1}{2}xy^3\)
\(=\left(-3.\dfrac{1}{2}\right)\left(x^4.x.x\right)\left(y^2.y^3\right).z^2\)
\(=\dfrac{-3}{2}x^6y^5z^2\)
Hệ số : \(\dfrac{-3}{2}\)
Bậc : 13
e) \(-3x^2yz\left(-5xy^3z^2\right)\)
\(=\left(-3.-5\right)\left(x^2.x\right)\left(y.y^3\right)\left(z.z^2\right)\)
\(=-15x^3y^4z^3\)
Hệ số : -15
Biến : 10
Ko ghi đề nha!
*+ \(=\left[2.\left(\dfrac{-1}{2}\right)\right]\left(a^3b.a^2b\right)\)
\(=-a^5b^2\) Bậc là 5+2=7
+ \(=\left(2^3.\dfrac{1}{2}\right)\left(xyz.x^2yx^3\right)\)
\(=4x^3y^2z^4\) Bậc là 3+2+4=9
* a) \(=\left(-7.\dfrac{3}{7}\right)\left(x^2yz.xy^2z^3\right)\)
\(=-3x^3y^3z^4\) Bậc là 3+3+4=10
b) \(=\left[\dfrac{1}{4}.\dfrac{2}{3}.\left(\dfrac{-4}{5}\right)\right]\left(xy^2x^2y^2yz^3\right)\)
\(=\dfrac{-2}{15}x^3y^5z^3\) Bậc là 3+5+3=11
Chào người bạn cũ
ko viết lại đề nữa nhé bạn .
a, = \(2xy^3.\dfrac{1}{9}x^4y^2z^2\) = \(\dfrac{2}{9}x^5y^5z^2\)
b,=\(9x^6y^3.\dfrac{1}{81}x^4x^6\)= \(\dfrac{1}{9}x^{16}y^3\) câu này có vẻ sai đề ý bạn nhưng mk vẫn làm theo đề bạn đưa .
c,\(=-\dfrac{1}{2}x^2y^3z.4x^4y^2z^4\)\(=-2x^6y^5z^5\)
d, câu d, bạn ghi ko rõ là ngoặc bình phương ở đâu nên mk ko làm . lần sau ghi đề ghi cẩn thận nha bạn .
1.
\((\frac{1}{3}xy)^2.x^3+\frac{3}{2}(2x)^3(-\frac{7}{4}x^2y^2)-\frac{2}{3}x^5y^2\)
\(=(\frac{1}{9}x^2y^2)x^3+\frac{3}{2}(8x^3)(-\frac{7}{4}x^2y^2)-\frac{2}{3}x^5y^2\)
\(=\frac{1}{9}(x^2.x^3)y^2+(\frac{3}{2}.8.\frac{-7}{4})(x^3.x^2).y^2-\frac{2}{3}x^5y^2\)
\(=\frac{1}{9}x^5y^2-21x^5y^2-\frac{2}{3}x^5y^2=\frac{-194}{9}x^5y^2\)
2.
\(\frac{-2}{5}x^2y(-y^6)+\frac{3}{2}xy(\frac{-1}{15}xy^6)+(-2xy)^2y^5\)
\(=\frac{2}{5}x^2(y.y^6)+(\frac{3}{2}.\frac{-1}{15})(x.x).(y.y^6)+4x^2(y^2.y^5)\)
\(=\frac{2}{5}x^2y^7-\frac{1}{10}x^2y^7+4x^2y^7=\frac{43}{10}x^2y^7\)
3.
\(\frac{3}{7}xy^2z+\frac{1}{2}x^3y^2+\frac{1}{3}x^3y^2-\frac{3}{7}xy^2z\)
\(=(\frac{3}{7}xy^2z-\frac{3}{7}xy^2z)+(\frac{1}{2}x^3y^2+\frac{1}{3}x^3y^2)\)
\(=\frac{5}{6}x^3y^2\)
4.
\(\frac{2}{3}xy^2-\frac{5}{2}yz+\frac{1}{2}xy^2-\frac{2}{3}yz\)
\(=(\frac{2}{3}xy^2+\frac{1}{2}xy^2)-(\frac{5}{2}yz+\frac{2}{3}yz)\)
\(=\frac{7}{6}xy^2+\frac{19}{6}yz\)
5.
\(\frac{3}{2}xy^2z^5-\frac{5}{4}xyz^2+\frac{4}{3}xy^2z^5+\frac{1}{2}xyz^2\)
\(=(\frac{3}{2}xy^2z^5+\frac{4}{3}xy^2z^5)+(\frac{-5}{4}xyz^2+\frac{1}{2}xyz^2)\)
\(=\frac{17}{6}xy^2z^5-\frac{3}{4}xyz^2\)
1,
\(\left(2x+1\right)^3=-0,001\\ \left(2x+1\right)^3=\left(-0.1\right)^3\\ \Leftrightarrow2x+1=-0.1\\ 2x=-1.1\\ x=-\dfrac{11}{10}:2\\ x=-\dfrac{11}{20}\\ Vậy...\)
2,
\(\left(2x-3\right)^4=\left(2x-3\right)^6\\ \Leftrightarrow\left(2x-3\right)^6-\left(2x-3\right)^4=0\\ \Leftrightarrow\left(2x-3\right)^4\cdot\left[\left(2x-3\right)^2-1\right]=0\\ \Rightarrow\left\{{}\begin{matrix}\left(2x-3\right)^4=0\\\left(2x-3\right)^2-1=0\end{matrix}\right.\\ \Leftrightarrow\left\{{}\begin{matrix}2x-3=0\\\left(2x-3\right)^2=1\end{matrix}\right.\\ \Leftrightarrow\left\{{}\begin{matrix}2x=3\\2x-3=1\end{matrix}\right.\\ \Leftrightarrow\left\{{}\begin{matrix}x=\dfrac{3}{2}\\x=2\end{matrix}\right.\\ Vậyx\in\left\{\dfrac{3}{2};2\right\}\)
3, Làm tương tự câu 2
5,
\(9^x:3^x=3\\ \left(9:3\right)^x=3\\ 3^x=3\\ \Rightarrow x=1\\ Vậy...\)
6,
\(3^x+3^{x+3}=756\\ 3^x+3^x\cdot3^3\\ 3^x\cdot\left(1+27\right)=756\\ 3^x\cdot28=756\\ \Leftrightarrow3^x=27\\ 3^x=3^3\\ \Rightarrow x=3\\ vậy...\)
7,
\(5^{x+1}+6\cdot5^{x+1}=875\\ 5^{x+1}\cdot\left(1+6\right)=875\\ 5^{x+1}\cdot7=875\\ \Leftrightarrow5^{x+1}=125\\ \Leftrightarrow5^{x+1}=5^3\Leftrightarrow x+1=3\\ \Rightarrow x=2\\ Vậy...\)
9,
I . Trắc Nghiệm
1B . 2D . 3C . 5A
II . Tự luận
2,a,Ta có: A+(x\(^2\)y-2xy\(^2\)+5xy+1)=-2x\(^2\)y+xy\(^2\)-xy-1
\(\Leftrightarrow\) A=(-2x\(^2\)y+xy\(^2\)-xy-1) - (x\(^2\)y-2xy\(^2\)+5xy+1)
=-2x\(^2\)y+xy\(^2\)-xy-1 - x\(^2\)y+2xy\(^2\)-5xy-1
=(-2x\(^2\)y - x\(^2\)y) + (xy\(^2\)+ 2xy\(^2\)) + (-xy - 5xy ) + (-1 - 1)
= -3x\(^2\)y + 3xy\(^2\) - 6xy - 2
b, thay x=1,y=2 vào đa thức A
Ta có A= -3x\(^2\)y + 3xy\(^2\) - 6xy - 2
= -3 . 1\(^2\) . 2 + 3 .1 . 2\(^2\) - 6 . 1 . 2 -2
= -6 + 12 - 12 - 2
= -8
3,Sắp xếp
f(x) =9-x\(^5\)+4x-2x\(^3\)+x\(^2\)-7x\(^4\)
=9-x\(^5\)-7x\(^4\)-2x\(^3\)+x\(^2\)+4x
g(x) = x\(^5\)-9+2x\(^2\)+7x\(^4\)+2x\(^3\)-3x
=-9+x\(^5\)+7x\(^4\)+2x\(^3\)+2x\(^2\)-3x
b,f(x) + g(x)=(9-x\(^5\)-7x\(^4\)-2x\(^3\)+x\(^2\)+4x) + (-9+x\(^5\)+7x\(^4\)+2x\(^3\)+2x\(^2\)-3x)
=9-x\(^5\)-7x\(^4\)-2x\(^3\)+x\(^2\)+4x-9+x\(^5\)+7x\(^4\)+2x\(^3\)+2x\(^2\)-3x
=(9-9)+(-x\(^5\)+x\(^5\))+(-7x\(^4\)+7x\(^4\))+(-2x\(^3\)+2x\(^3\))+(x\(^2\)+2x\(^2\))+(4x-3x)
= 3x\(^2\) + x
g(x)-f(x)=(-9+x\(^5\)+7x\(^4\)+2x\(^3\)+2x\(^2\)-3x) - (9-x\(^5\)-7x\(^4\)-2x\(^3\)+x\(^2\)+4x)
=-9+x\(^5\)+7x\(^4\)+2x\(^3\)+2x\(^2\)-3x-9+x\(^5\)+7x\(^4\)+2x \(^3\)-x\(^2\)-4x
=(-9-9)+(x\(^5\)+x\(^5\))+(7x\(^4\)+7x\(^4\))+(2x\(^3\)+2x\(^3\))+(2x\(^2\)-x\(^2\))+(3x-4x)
= -18 + 2x\(^5\) + 14x\(^4\) + 4x\(^3\) + x\(^2\) - x
\(A=4x^2y+\dfrac{14}{15}xy^2-2xy-\dfrac{2}{3}\) bậc : 3
\(B=2xy^2z-1\) bậc :4
+ Thu gọn :
\(A=4x^2y+\dfrac{14}{15}xy^2-2xy-\dfrac{2}{3}\)
\(B=2xy^2z-1\)
+ Bậc
Đa thức \(A\) có 4 hạng tử :
\(4x^2y\) có bậc \(3\)
\(\dfrac{14}{15}xy^2\) có bậc \(3\)
\(-2xy\) có bậc \(2\)
\(-\dfrac{2}{3}\) có bậc \(0\)
Đa thức \(B\) có \(2\) hạng tử :
\(2xy^2z\) có bậc \(4\)
\(-1\) có bậc \(0\)