K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

12 tháng 1 2018

\(\frac{1}{2}x^2y^3-x^2y^3+3x^2y^2z^2-z^4-3x^2y^2z^2\)

\(=\left(\frac{1}{2}x^2y^3-x^2y^3\right)+\left(3x^2y^2z^2-3x^2y^2z^2\right)-z^4\)

\(=-\frac{1}{2}x^2y^3-z^4\)

12 tháng 1 2018

x^2.y^2.(-1/2)-z^4

\(Q=x^2+2xy+\left(-3x^3+3x^3\right)+\left(2y^3-y^3\right)=x^2+2xy+y^3\)

\(P=\left(\dfrac{1}{3}x^2y-\dfrac{1}{3}x^2y\right)+\left(xy^2+\dfrac{1}{2}xy^2\right)-\left(xy+5xy\right)=\dfrac{3}{2}xy^2-6xy\)

8 tháng 5 2017

A=(\(\dfrac{4}{9}x^4y^2\)).\(\dfrac{2}{5}xy^3\)

=\(\left(\dfrac{4}{9}.\dfrac{2}{5}\right)\).\(\left(x^4x\right)\left(y^2y^3\right)\)

=\(\dfrac{8}{45}x^5y^5\)

1 tháng 5 2018

\(a,x^3+2x^2y+3x^2+3y^2-3x^2\)

\(=x^3+2x^2y+3y^2\)

\(b,\)Thay x = 1, y = 2 vào đa thức x3 + 2x2y + 3y2 ta được:

\(1^3+2.1^2.2+3.2^2\)

\(=1+4+12\)

\(=17\)

Vậy giá trị của đa thức tại x = 1, y = 2 là 17

a) Các đơn thức đồng dạng trong các đơn thức sau là: \(5x^2yz;-2x^2yz\) ; \(x^2yz\) ; \(0,2x^2yz\)

b) \(M\left(x\right)=3x^2+5x^3-x^2+x-3x-4\)

    \(M\left(x\right)=(3x^2-x^2)+5x^3+(x-3x)-4\)

    \(M\left(x\right)=2x^2+5x^3-2x-4\)

    \(M\left(x\right)=5x^3+2x^2-2x-4\)

c) \(P+Q=\left(x^3x+3\right)+\left(2x^3+3x^2+x-1\right)\)

   \(P+Q=x^3x+3+2x^3+3x^2+x-1\)

   \(P+Q=\left(x^3+2x^3\right)+\left(x+x\right)+\left(3-1\right)+3x^2\)

   \(P+Q=3x^3+2x+2+3x^2\)

    

    

   

4 tháng 3 2022

\(x^4-2xy+y^2+3x^4-\dfrac{1}{2}xy-2y^2\\ =\left(x^4+3x^4\right)-\left(2xy+\dfrac{1}{2}xy\right)+\left(y^2-2y^2\right)\\ =4x^4-\dfrac{5}{2}xy-y^2\)

Bậc:4

a: \(A=-4x^5y^3-2x^2y^3z^2-2y^4\)

b: \(B=-4x^5y^3-2x^2y^3z^2-2y^4+2x^2y^3z^2-\dfrac{2}{3}y^4+\dfrac{1}{5}x^4y^3=-4x^5y^3+\dfrac{1}{5}x^4y^3-\dfrac{8}{3}y^4\)