Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a: từ 1 đến 100 sẽ có \(\dfrac{100-1}{1}+1=100-1+1=100\left(số\right)\)
=>Sẽ có \(\dfrac{100}{2}=50\) cặp số
1-2+3-4+...+99-100
=(1-2)+(3-4)+...+(99-100)
=(-1)+(-1)+...+(-1)
=-1*50=-50
b: Sửa đề: \(2-4+6-8+...+46-48+50\)
Từ 2 đến 48 sẽ có \(\dfrac{48-2}{2}+1=24-1+1=24\left(số\right)\)
=>Sẽ có \(\dfrac{24}{2}=12\left(cặp\right)\)
\(2-4+6-8+...+46-48+50\)
\(=\left(2-4\right)+\left(6-8\right)+...+\left(46-48\right)+50\)
\(=\left(-2\right)+\left(-2\right)+...+\left(-2\right)+50\)
\(=50-2\cdot24=50-48=2\)
c: Đặt A=\(1+2-3+4+...+97+98-99+100\)
\(=\left(1+2-3+4\right)+\left(5+6-7+8\right)+...+\left(97+98-99+100\right)\)
\(=4+12+...+196\)
Từ 4 đến 196 sẽ có \(\dfrac{196-4}{8}+1=\dfrac{192}{8}+1=25\left(số\right)\)
Tổng của dãy A là: \(\left(196+4\right)\cdot\dfrac{25}{2}=\dfrac{25}{2}\cdot200=100\cdot25=2500\)
a) \(1+2+3+4+...+n\)
\(=\left(n+1\right)\left[\left(n-1\right):1+1\right]:2\)
\(=\left(n+1\right)\left(n-1+1\right):2\)
\(=n\left(n+1\right):2\)
\(=\dfrac{n\left(n+1\right)}{2}\)
b) \(2+4+6+..+2n\)
\(=\left(2n+2\right)\left[\left(2n-2\right):2+1\right]:2\)
\(=2\left(n+1\right)\left[2\left(n-1\right):2+1\right]:2\)
\(=\left(n+1\right)\left(n-1+1\right)\)
\(=n\left(n+1\right)\)
c) \(1+3+5+...+\left(2n+1\right)\)
\(=\left[\left(2n+1\right)+1\right]\left\{\left[\left(2n-1\right)-1\right]:2+1\right\}:2\)
\(=\left(2n+1+1\right)\left[\left(2n-1-1\right):2+1\right]:2\)
\(=\left(2n+2\right)\left[\left(2n-2\right):2+1\right]:2\)
\(=2\left(n+1\right)\left[2\left(n-1\right):2+1\right]:2\)
\(=\left(n+1\right)\left(n-1+1\right)\)
\(=n\left(n+1\right)\)
d) \(1+4+7+10+...+2005\)
\(=\left(2005+1\right)\left[\left(2005-1\right):3+1\right]:2\)
\(=2006\cdot\left(2004:3+1\right):2\)
\(=2006\cdot\left(668+1\right):2\)
\(=1003\cdot669\)
\(=671007\)
e) \(2+5+8+...+2006\)
\(=\left(2006+2\right)\left[\left(2006-2\right):3+1\right]:2\)
\(=2008\cdot\left(2004:3+1\right):2\)
\(=1004\cdot\left(668+1\right)\)
\(=1004\cdot669\)
\(=671676\)
g) \(1+5+9+...+2001\)
\(=\left(2001+1\right)\left[\left(2001-1\right):4+1\right]:2\)
\(=2002\cdot\left(2000:4+1\right):2\)
\(=1001\cdot\left(500+1\right)\)
\(=1001\cdot501\)
\(=501501\)
A = 1 - 2 + 3 - 4 + 5 - 6 + 7 - 8 +....+ 99 - 100
A = (1 - 2) + ( 3- 4) + ....+ (99 - 100)
Xét dãy số 1; 3;...; 99
Dãy số trên là dãy số cách đều với khoảng cách là: 3 - 1 = 2
Số số hạng của dãy số trên là: ( 99 - 1): 2 + 1 = 50
A là tổng của 50 nhóm mỗi nhóm cóa giá tri là: 1 - 2 = - 1
A = - 1 \(\times\) 50 = - 50
B = 1 - 2 - 3 + 4 + 5 - 6 - 7 + 8 +...+ 97 - 98 - 99 + 100
B = ( 1 - 2 - 3 + 4) + ( 5 - 6 - 7 + 8) +...+ ( 97 - 98 - 99 + 100)
B = 0 + 0 +...+ 0
B = 0
Nhiều thế ưu tiên làm câu 2 trước
a) A = 1 + 3 + 32 + ... + 3100
3A = 3 + 32 + ... + 3101
3A - A = 3101 - 1
2A = 3101 - 1 => A = \(\frac{3^{101}-1}{2}\)
b) B = 1 + 4 + 42 + ... + 4100
4B = 4 + 42 + ... + 4101
4B - B = 4101 - 1
3B = 4101 - 1 => B = \(\frac{4^{101}-1}{3}\)
c) C = 1 + 5 + 52 + ... + 5100
5C = 5 + 52 + ... + 5101
5C - C = 5101 - 1
4C = 5101 - 1 => C = \(\frac{5^{101}-1}{4}\)
d) chả hiểu gì hết
1. 3A = 3^2 + 3^3 + 3^4 + ... + 3^100 + 3^ 101
=> 3A - A = (3^2 + 3^3 + 3^4 + ... + 3^100 + 3^ 101) - (3 + 3^2 + 3^3 + 3^4 + ... + 3^100 )
=> 2A = 3^101 - 3 => 2A + 3 = 3^101 vậy n = 101
2. 2A = 8 + 2 ^ 3 + 2^4 + ... + 2^20 + 2^21
=> 2A - A = (8 + 2 ^ 3 + 2^4 + ... + 2^20 + 2^21) - (4+ 2^2 + 2 ^ 3 + 2^4 + ... + 2^20 )
=> A = 2^21 là một lũy thừa của 2
3.
a) 3A = 3 + 3^2 + 3^3 + 3^4 + ... + 3^100 + 3^ 101
=> 3A - A = (3 + 3^2 + 3^3 + 3^4 + ... + 3^100 + 3^ 101) - (1 + 3 + 3 ^2 + 3 ^ 3 + ... + 3 ^100)
=> 2A = 3^101 - 1 => A = (3^101 - 1)/2
b) 4B = 4 + 4 ^ 2 + 4 ^3 + 4 ^ 4 + ... + 4 ^ 100 + 4^ 101
=> 4B - B = (4 + 4 ^ 2 + 4 ^3 + 4 ^ 4 + ... + 4 ^ 100 + 4^ 101) - (1 + 4 + 4 ^ 2 + 4 ^3 + 4 ^ 4 + ... + 4 ^ 100 )
=> 3B = 4^101 - 1 => B = ( 4^101 - 1)/2
c) xem lại đề ý c xem quy luật như thế nào nhé.
d) 3D = 3^101 + 3^ 102 + 3^ 103 + ... + 36 150 + 3^ 151
=> 3D - D = (3^101 + 3^ 102 + 3^ 103 + ... + 36 150 + 3^ 151) - (3 ^100 + 3 ^ 101 + 3 ^ 102 + .... + 3 ^ 150)
=> 2D = 3^ 151 - 3^100 => D = ( 3^ 151 - 3^100)/2
a) Ta có: \(2A=2^2+2^3+2^4+2^5+2^6+...+2^{99}\)
-
\(A=2+2^2+2^3+2^4+2^5+2^6+...+2^{100}\)
_______________________________________________________
\(A=2-2^{100}\)
Các bài khác cũng thế. Đây là mình tự nghĩ chứ không biết có đúng không. Có 60% sai! :)
a) 3A = 3 + 3^2 + 3^3 + 3^4 + ... + 3^100 + 3^ 101
=> 3A - A = (3 + 3^2 + 3^3 + 3^4 + ... + 3^100 + 3^ 101) - (1 + 3 + 3 ^2 + 3 ^ 3 + ... + 3 ^100)
=> 2A = 3^101 - 1 => A = (3^101 - 1)/2
b) 4B = 4 + 4 ^ 2 + 4 ^3 + 4 ^ 4 + ... + 4 ^ 100 + 4^ 101
=> 4B - B = (4 + 4 ^ 2 + 4 ^3 + 4 ^ 4 + ... + 4 ^ 100 + 4^ 101) - (1 + 4 + 4 ^ 2 + 4 ^3 + 4 ^ 4 + ... + 4 ^ 100 )
=> 3B = 4^101 - 1 => B = ( 4^101 - 1)/2
c) xem lại đề ý c xem quy luật như thế nào nhé.
d) 3D = 3^101 + 3^ 102 + 3^ 103 + ... + 36 150 + 3^ 151
=> 3D - D = (3^101 + 3^ 102 + 3^ 103 + ... + 36 150 + 3^ 151) - (3 ^100 + 3 ^ 101 + 3 ^ 102 + .... + 3 ^ 150)
=> 2D = 3^ 151 - 3^100 => D = ( 3^ 151 - 3^100)/2
a) Có A=\(1+3+3^2+3^3+....+3^{100}\)
\(\Rightarrow\)3A =\(3\left(1+3+3^2+3^3+...+3^{100}\right)\)=\(3+3^2+3^3+3^4+...+3^{101}\)
\(\Rightarrow2A=3+3^2+3^3+....+3^{101}-1-3-3^2-3^3-....-3^{100}=3^{101}-1\)\(\Rightarrow A=\dfrac{3^{101}-1}{2}\)
Bài b/c/d : bn cứ lm tương tự.