K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

a: =6x-3-|x-5|

Trường hợp 1: x>=5

A=6x-3-x+5=5x+2

Trường hợp 2: x<5

A=6x-3-(5-x)=6x-3+x-5=7x-8

b: Trường hợp 1: x>=-3/2

A=2x+3+x+2=3x+5

Trường hợp 2: x<-3/2

A=-2x-3+x+2=-x-1

18 tháng 5 2022

`a)3(2x-1)-|x-5|`

`@TH1: x-5 >= 0<=>x >= 5=>|x-5|=x-5`

   `=>3(2x-1)-(x-5)=6x-3-x+5=5x+2`

`@TH2: x-5 < 0<=>x < 5=>|x-5|=5-x`

   `=>3(2x-1)-(5-x)=6x-3-5+x=7x-8`

____________________________________________________

`b)|2x+3|+x+2`

`@TH1:2x+3 >= 0<=>x >= [-3]/2=>|2x+3|=2x+3`

     `=>2x+3+x+2=3x+5`

`@TH2:2x+3 < 0<=>x < [-3]/2 =>|2x+3|=-2x-3`

     `=>-2x-3+x+2=-x-1`   

28 tháng 8 2017

Huhu, mik không biết giải mong bạn thông cảm!

28 tháng 8 2017

câu B bài cuối là D= 1 phần 2|x-1|+3 nha mọi ng

9 tháng 1

Để thu gọn và sắp xếp các hạng tử của mỗi đa thức, ta cần thực hiện các bước sau:
Đối với đa thức P(x): P(x) = (4x + 1 - x^2 + 2x^3) - (x^4 + 3x - x^3 - 2x^2 - 5) = 4x + 1 - x^2 + 2x^3 - x^4 - 3x + x^3 + 2x^2 + 5 = -x^4 + 3x^3 + x^2 + x + 6
Đối với đa thức Q(x): Q(x) = 3x^4 + 2x^5 - 3x - 5x^4 - x^5 + x + 2x^5 - 1 = 2x^5 - x^5 + 3x^4 - 5x^4 + x - 3x - 1 = x^5 - 2x^4 - 2x - 1
Sau khi thu gọn và sắp xếp các hạng tử, ta có: P(x) = -x^4 + 3x^3 + x^2 + x + 6 Q(x) = x^5 - 2x^4 - 2x - 1

a: \(P\left(x\right)=\left(4x+1-x^2+2x^3\right)-\left(x^4+3x-x^3-2x^2-5\right)\)

\(=4x+1-x^2+2x^3-x^4-3x+x^3+2x^2+5\)

\(=-x^4+3x^3+x^2+x+6\)

\(Q\left(x\right)=3x^4+2x^5-3x-5x^4-x^5+x+2x^5-1\)

\(=\left(2x^5-x^5+2x^5\right)+\left(3x^4-5x^4\right)+\left(-3x+x\right)-1\)

\(=-x^5-2x^4-2x-1\)

b: Bạn ghi lại đề đi bạn

5 tháng 9 2020

B1:

Vì \(\hept{\begin{cases}\left|x-\frac{1}{2}\right|\ge0\\\left|2y-\frac{1}{3}\right|\ge0\\\left|4z+5\right|\ge0\end{cases}\left(\forall x,y,z\right)}\Rightarrow\left|x-\frac{1}{2}\right|+\left|2y-\frac{1}{3}\right|+\left|4z+5\right|\ge0\left(\forall x,y,z\right)\)

Mà theo đề bài, \(\left|x-\frac{1}{2}\right|+\left|2y-\frac{1}{3}\right|+\left|4z+5\right|\le0\) nên dấu "=" xảy ra khi:

\(\left|x-\frac{1}{2}\right|=\left|2y-\frac{1}{3}\right|=\left|4z+5\right|=0\Rightarrow\hept{\begin{cases}x=\frac{1}{2}\\y=\frac{1}{6}\\z=-\frac{5}{4}\end{cases}}\)

5 tháng 9 2020

B2:

a) Nếu \(x< 1\) => \(A=1-x+x+3=4\)

Nếu \(x\ge1\) => \(A=x-1+x+3=2x+2\)

b) Nếu \(x< -\frac{3}{2}\) => \(B=2x+2x+3=4x+3\)

Nếu \(x\ge-\frac{3}{2}\) => \(B=2x-2x-3=-3\)

23 tháng 2 2022

a, \(A=2x^2+x+6\)

Với x = 1 suy ra A = 2 + 1 + 6 = 9 

Với x = 1/2 suy ra A = 1/2 + 1/2 + 6 = 7 

b, \(B=7x-6y-5\)Thay x = 3 ; y = -2 ta được 

B = 7.3 - 6 ( - 2 ) - 5 = 21 + 12 - 5 = 33 - 5 = 28 

HQ
Hà Quang Minh
Giáo viên
19 tháng 9 2023

a) 4x2(5x2 + 3) – 6x(3x3 – 2x + 1) – 5x3 (2x – 1)

= 4x2 . 5x2 + 4x2 . 3 – [6x . 3x3 + 6x . (-2x) + 6x . 1] – [5x3 . 2x + 5x3 . (-1)]

= 20x4 + 12x2 – (18x4 – 12x2 + 6x) – (10x4 – 5x3)

= 20x4 + 12x2 - 18x4 + 12x2 - 6x - 10x4 + 5x3

= (20x4 – 18x4 - 10x4 ) + 5x3 + (12x2 + 12x2 ) – 6x

= -8x4 + 5x3 + 24x2 – 6x

\(\begin{array}{l}b)\dfrac{3}{2}x\left( {{x^2} - \dfrac{2}{3}x + 2} \right) - \dfrac{5}{3}{x^2}(x + \dfrac{6}{5})\\ = \dfrac{3}{2}x.{x^2} + \dfrac{3}{2}x.( - \dfrac{2}{3}x) + \dfrac{3}{2}x.2 - (\dfrac{5}{3}{x^2}.x + \dfrac{5}{3}{x^2}.\dfrac{6}{5})\\ = \dfrac{3}{2}{x^3} - {x^2} + 3x - (\dfrac{5}{3}{x^3} + 2{x^2})\\ = \dfrac{3}{2}{x^3} - {x^2} + 3x - \dfrac{5}{3}{x^3} - 2{x^2}\\ = (\dfrac{3}{2}{x^3} - \dfrac{5}{3}{x^3}) + ( - {x^2} - 2{x^2}) + 3x\\ = \dfrac{{ - 1}}{6}{x^3} - 3{x^2} + 3x\end{array}\)

`@` `\text {Ans}`

`\downarrow`

`a)`

`(3x^2 + 2x)*(x^2 - 3) + (4 - x^3) * (3x+2)`

`= 3x^2(x^2 - 3) + 2x(x^2 - 3) + 4(3x+2) - x^3(3x+2)`

`= 3x^4 - 9x^2 + 2x^3 - 6x + 12x + 8 - 3x^4 - 2x^3`

`= (3x^4 - 3x^4) + (2x^3 - 2x^3) - 9x^2 + (-6x+12x) + 8`

`= -9x^2 + 6x + 8`

14 tháng 4 2022

a)\(P\left(x\right)=x^4+3\)

b)\(Q\left(x\right)=-x^3-2x^2-14x-1\)

1 tháng 3 2022

\(A=x^2-7x^3+7\)Thay x = 1 ta được 

\(A=1-7+7=1\)

1 tháng 3 2022

Thay x=1 vào A ta có:
\(A=2x^2-4x^3+7-x^2-3x^3\\ =x^2-7x^3+7\\ =1^2-7.1^3+7\\ =1-7+7\\ =1\)