Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(\left(3x-4\right)^2+2\left(3x-4\right)\left(x-4\right)+\left(x-4\right)^2\)
\(=\left(3x-4+x-4\right)^2\)
\(=\left(4x-8\right)^2\)
1) \(\left(x+1\right)\left(x+2\right)-3x\left(x-4\right)=x^2+3x+2-3x^2+12x=-2x^2+15x+2\)
2) \(\left(3x-4\right)\left(x-2\right)=3x\left(x-9\right)\)
\(\Leftrightarrow3x^2-10x+8=3x^2-27x\)
\(\Leftrightarrow17x=-8\Leftrightarrow x=-\dfrac{8}{17}\)
3) \(-3\left(x-4\right)\left(x-2\right)-x^2\left(-3x+18\right)+24x-25\)
\(=-3x^3+6x^2+12x^2-24x+3x^3-18x^2+24x-25=-25\)
a) (x2-1)(x2+4)(x2-4)=(x2-1)(x4-16)
b) 9x2+6x+1+4-9x2= 6x+5
\(a,A=4-4x+x^2+6x^2-8x-8+9x^2+12x+4\\ A=16x^2\\ b,x=-\dfrac{1}{2}\Leftrightarrow A=16\cdot\dfrac{1}{4}=4\)
a: \(A=x^2-4x+4+9x^2-12x+4+2\left(3x^2+2x-6x-4\right)\)
\(=10x^2-16x+8+6x^2-8x-8\)
\(=16x^2-24x\)
b: \(A=16\cdot\dfrac{1}{4}-24\cdot\dfrac{-1}{2}=4+12=16\)
TXĐ: \(\left\{{}\begin{matrix}x\in R\\x\notin\left\{0;-1\right\}\end{matrix}\right.\)
a: Ta có: \(A=\dfrac{3x^2-12x+12}{x^2-4}\)
\(=\dfrac{3\left(x^2-4x+4\right)}{\left(x-2\right)\left(x+2\right)}\)
\(=\dfrac{3x-6}{x+2}\)
b: Thay \(x=-\dfrac{1}{2}\) vào A, ta được:
\(A=\left(3\cdot\dfrac{-1}{2}-6\right):\left(-\dfrac{1}{2}+2\right)\)
\(=\left(-\dfrac{3}{2}-6\right):\dfrac{3}{2}\)
\(=\dfrac{-15}{2}\cdot\dfrac{2}{3}=-5\)
a: =12x^3y^2-12x^3y^3+6x^2y^2
b: =\(\left(-3x+2\right)\left(5x^2-\dfrac{1}{3}x+4\right)\)
=-15x^3+x^2-12x+10x^2-2/3x+8
=-15x^3+11x^2-38/3x+8
c: =x^2-x-2+3x-x^2
=2x-2
a: =18x^3y^2-12x^3y^3+6x^2y^2
b: (-3x+2)(5x^2-1/3x+4)
=-12x^3+x^2-12x+10x^2-2/3x+8
=-12x^3+11x^2-38/3x+8
c: =x^2-x-2+3x-x^2
=2x-2
d: =4x^2+12x+9-4x^2+25-(x-1)(x^2+12)
=12x+34-x^3-12x+x^2+12
=-x^3+x^2+46
\(\left(x+2\right)^2-\left(x+4\right)^2+x^2-3x+1\)
\(=x^2+4x+4-x^2-8x-16+x^2-3x+1\)
\(=x^2-7x-11\)
\(\left(x+2\right)^2-\left(x+4\right)^2+x^2-3x+1\)
\(=x^2+4x+4-x^2-8x-16+x^2-3x+1=x^2-7x-11\)