K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

8 tháng 8 2023

\(A=\dfrac{1}{x^2+x}+\dfrac{1}{x^2+3x+2}+\dfrac{1}{x^2+5x+6}+\dfrac{1}{x+3}\) (ĐK: \(x\ne-1;x\ne0;x\ne-2;x\ne-3\))

\(A=\dfrac{1}{x\left(x+1\right)}+\dfrac{1}{\left(x+1\right)\left(x+2\right)}+\dfrac{1}{\left(x+2\right)\left(x+3\right)}+\dfrac{1}{x+3}\)

\(A=\dfrac{\left(x+2\right)\left(x+3\right)}{x\left(x+1\right)\left(x+2\right)\left(x+3\right)}+\dfrac{x\left(x+3\right)}{x\left(x+1\right)\left(x+2\right)\left(x+3\right)}+\dfrac{x\left(x+1\right)}{x\left(x+1\right)\left(x+2\right)\left(x+3\right)}+\dfrac{x\left(x+1\right)\left(x+2\right)}{x\left(x+1\right)\left(x+2\right)\left(x+3\right)}\)\(A=\dfrac{x^2+5x+6+x^2+3x+x^2+x+x^3+2x^2+x^2+2x}{x\left(x+1\right)\left(x+2\right)\left(x+3\right)}\)

\(A=\dfrac{x^3+6x^2+11x+6}{x\left(x+1\right)\left(x+2\right)\left(x+3\right)}\)

\(A=\dfrac{x^3+5x^2+6x+x^2+5x+6}{x\left(x+1\right)\left(x+2\right)\left(x+3\right)}\)

\(A=\dfrac{x\left(x+5x+6\right)+\left(x^2+5x+6\right)}{x\left(x+1\right)\left(x+2\right)\left(x+3\right)}\)

\(A=\dfrac{\left(x^2+5x+6\right)\left(x+1\right)}{x\left(x+1\right)\left(x+2\right)\left(x+3\right)}\)

\(A=\dfrac{\left(x+1\right)\left(x+2\right)\left(x+3\right)}{x\left(x+1\right)\left(x+2\right)\left(x+3\right)}\)

\(A=\dfrac{1}{x}\)

c: Ta có: \(6x^2-\left(2x+5\right)\left(3x-2\right)\)

\(=6x^2-6x^2+4x-15x+10\)

=-11x+10

d: Ta có: \(2x\left(3x-1\right)-\left(x-3\right)\left(6x+2\right)\)

\(=6x^2-2x-6x^2-2x+18x+6\)

=14x+6

13 tháng 8 2021

(1𝑦/3+3)^3

(𝑦/3+3)^3

(𝑦/3+3⋅3/3)^3

(𝑦+3⋅3/3)^3

(𝑦+9/3)^3

\(\left(\dfrac{1}{3}y+3\right)^3=\dfrac{1}{27}y^3+y^2+9y+27\)

\(\left(\dfrac{1}{3y+3}\right)^3=\dfrac{1}{\left(3y+3\right)^3}=\dfrac{1}{27y^3+81y^2+81y+27}\)

13 tháng 8 2021

\(\left(\dfrac{1}{3y+3}\right)^3=\dfrac{1^3}{\left(3y+3\right)^3}=\dfrac{1}{27\left(y^3+3y^2+3y+1\right)}\)

6 tháng 12 2021

\(\text{ 2x.(x-2)+(x+3).(1-2x)}\\ =\left(2x^2-4x\right)+\left(x-2x^2+3-6x\right)\\ =2x\left(x-2\right)+\left(-5-2x^2+3\right)\)

7 tháng 11 2021

\(=8x^3-36x^2+54x-27+2x^2-8x^3-29=-34x^2+54x-56\)

\(=8x^3-36x^2+54x-27+2x^2-8x^3-29\)

\(=-34x^2+54x-56\)

11 tháng 10 2021

nhầm đề chỗ nào ko

phải có 1 dấu - chứ

11 tháng 10 2021

\(\left(2x+y\right)\left(4x^2-2xy+y^2\right)=8x^3+y^3\)

8 tháng 6 2021

\(\left(5xy-2\right)\left(5xy+2\right)=\left(5xy\right)^2-2^2=25x^2y^2-4\)

21 tháng 11 2023

\(\left(x+5\right)^2-\left(x+3\right)\left(x-2\right)\)

\(=\left(x^2+2\cdot5\cdot x+5^2\right)-\left(x^2+3x-2x-6\right)\)

\(=\left(x^2+10x+25\right)-\left(x^2+x-6\right)\)

\(=x^2+10x+25-x^2-x+6\)

\(=9x+31\)

21 tháng 11 2023

\((x+5)^2-(x+3)(x-2)\\=(x^2+2\cdot x\cdot5+5^2)-[x(x-2)+3(x-2)]\\=(x^2+10x+25)-(x^2-2x+3x-6)\\=x^2+10x+25-(x^2+x-6)\\=x^2+10x+25-x^2-x+6\\=(x^2-x^2)+(10x-x)+(25+6)\\=9x+31\)

a: Ta có: \(\left(x+y\right)^3-\left(x-y\right)^3\)

\(=x^3+3x^2y+3xy^2+y^3-x^3+3x^2y-3xy^2+y^3\)

\(=6x^2y+2y^3\)

13 tháng 8 2021

\(\left(x+y\right)^3-\left(x-y\right)^3\)

\(=\left(x+y-x+y\right)^3+3\left(x+y\right)\left(x-y\right)\left(x+y-x+y\right)\)

\(=8y^3+6y\left(x^2-y^2\right)\)

\(=8y^3+6x^2y-6y^3\)

\(=2y^3+6x^2y\)