Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a: \(A=\left(5xy-2xy+4xy\right)+3x-2y-y^2\)
\(=7xy+3x-2y-y^2\)
b: \(B=\left(\dfrac{1}{2}ab^2-\dfrac{7}{8}ab^2-\dfrac{1}{2}ab^2\right)+\left(\dfrac{3}{4}a^2b-\dfrac{3}{8}a^2b\right)\)
\(=\dfrac{-7}{8}ab^2+\dfrac{3}{8}a^2b\)
c: \(C=\left(2a^2b+5a^2b\right)+\left(-8b^2-3b^2\right)+\left(5c^2+4c^2\right)\)
\(=7a^2b-11b^2+9c^2\)
Nguyễn Huy TúHoàng Thị Ngọc AnhAkai Harumangonhuminhhelp me!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!
Áp dụng tính chất dãy tỉ số bằng nhau, ta có:
\(\frac{a}{a+2b}=\frac{b}{b+2c}=\frac{c}{c+2a}=\frac{a+b+c}{a+2b+2+2c+1+2a}\\ =\frac{a+b+c}{\left(a+2a\right)+\left(b+2b\right)+\left(c+2c\right)}\\ =\frac{a+b+c}{3a+3b+3c}\\ =\frac{a+b+c}{3\left(a+b+c\right)}\)
Ta có:
\(a+b+c⋮a+b+c\\ \Rightarrow a+b+c⋮3\)
Vậy \(a+b+c⋮3\)
Em kiểm tra lại đề ở tỉ số đầu tiên
\(\dfrac{2a+2b-2c}{c}=\dfrac{2b-2c+2a}{a}\)
Hay là: \(\dfrac{2a+2b-2c}{c}=\dfrac{2b+2c-2a}{a}\)