\(\frac{x^{95}+x^{94}+x^{93}+...+x+1}{x^{31}+x^{30}+x^{29}+...+x+1}\)...">
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

22 tháng 7 2016

Ta có: TS= \(x^{95}+x^{94}+...+x+1\)(1)

=> x\(\cdot TS=x^{96}+x^{95}+...+x^2+x\)(2)

Từ (1)(2)=> \(\left(x-1\right)TS=x^{96}-1\)

=> \(TS=\frac{x^{96}-1}{x-1}\)

Ta có: MS=\(x^{31}+x^{30}+x^{29}+...+x+1\)(3)

=> x\(\cdot MS=x^{32}+x^{31}+x^{30}+...+x^2+x\)(4)

Từ (4)(3)=> \(\left(x-1\right)\cdot MS=x^{32}-1\)

<=> \(MS=\frac{x^{32}-1}{x-1}\)

Vậy A= \(\frac{x^{96}-1}{x-1}:\frac{x^{32}-1}{x-1}=\frac{x^{96}-1}{x^{32}-1}\)

 

20 tháng 7 2016

A = \(\left[\left(x^{95}+x^{94}+....+x^{64}\right)+\left(x^{63}+x^{62}+....+x^{32}\right)+\left(x^{31}+x^{30}+....+1\right)\right]:\left(x^{31}+x^{30}+....+1\right)\) Đặt thừa số chung

=> A = \(x^{64}+x^{32}+1\)

20 tháng 7 2016

Chúc bạn làm bài tốthihi

20 tháng 7 2016

M(x)=x^95+x^94+x^93+.....+x^2+x+1 
=x^64(x^31+x^30+...+x+1)+x^32(x^31+x^3... x^31+x^30+x^29+...+x^2+x+1 
=(x^64+x^32+1)(x^31+x^30+x^29+...+x^2+... 

=>dpcm

20 tháng 7 2016

P(x) = M(x) * (x-1) = (x^96+x^95+x^94+ ...+x^2+x) - (x^95+x^94+ ...+x+1) = x^96-1 
Q(x) = N(x) * (x-1) = (x^32+x^31+x^30+ ...+x^2+x) - (x^31+x^30+ ...+x+1) = x^32-1 
Vì P(x) = x^96 - 1 = (x^32)^3 - 1 chia hết cho Q(x) (áp dụng hằng đẳng thức) 
---> M(x) chia hết cho N(x) (đpcm)

30 tháng 6 2016

đặt A= \(\frac{x^3}{8}+\frac{x^2y}{4}+\frac{xy^2}{6}+\frac{y^3}{27}=\left(\frac{x}{2}\right)^3+3.\left(\frac{x}{2}\right)^2.\left(\frac{y}{3}\right)+3\left(\frac{x}{2}\right)\left(\frac{y}{3}\right)^2+\left(\frac{y}{3}\right)^3\)

\(\left(\frac{x}{2}+\frac{y}{3}\right)^3\)

thay x=-8 vfa y=6 ta đucọ 

A= \(\left(-\frac{8}{2}+\frac{6}{3}\right)^3=\left(-4+2\right)^3=\left(-2\right)^3=-8\)

30 tháng 6 2016

nhưng mk vẫn ko hiểu cho lắm ở bước đầu

23 tháng 7 2016

xem lại đề bài nha bạnok

1 tháng 8 2016

\(x^2-x-1=x^2-2.x.\frac{1}{2}+\frac{1}{4}-\frac{5}{4}=\left(x-\frac{1}{2}\right)^2-\frac{5}{4}\)

sai đề 

1 tháng 8 2016

Ta có: \(x^2-x-1=x^2-2\cdot\frac{1}{2}x+\frac{1}{4}-\frac{5}{4}\)\(\left(x-\frac{1}{2}\right)^2-\frac{5}{4}\)\(\le-\frac{5}{4}\)

 => x2-x-1 \(\le-\frac{5}{4}\) chứ ko phải nhỏ hơn 0 

 

 

15 tháng 8 2016

ta có : \(x+\frac{1}{x}=10\)

<=> \(x^2-10x+1=0\)

<=> \(x=5-2\sqrt{6},x=5+2\sqrt{6}\)

ta thay lần lượt  các giá trị x trên vào S

với \(x=5-2\sqrt{6}\)=> S=95050

với \(x=5+2\sqrt{6}\)=> S=95050

vậy S=95050

 

17 tháng 9 2017

ta có : \(m=x^2-x+1=x^2-2.\dfrac{1}{2}.x+\left(\dfrac{1}{2}\right)^2+\dfrac{3}{4}=\left(x-\dfrac{1}{2}\right)^2+\dfrac{3}{4}\ge\dfrac{3}{4}\) với mọi \(x\)

\(\Rightarrow\) giá trị nhỏ nhất của \(m=x^2-x+1\)\(\dfrac{3}{4}\) khi \(\left(x-\dfrac{1}{2}\right)^2=0\Leftrightarrow x-\dfrac{1}{2}=0\Leftrightarrow x=\dfrac{1}{2}\)

vậy giá trị nhỏ nhất của \(m=x^2-x+1\)\(\dfrac{3}{4}\) khi \(x=\dfrac{1}{2}\)