Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Bài 1:
a) 8154-(674+8154)+(-98+674)
=8154-674-8154-98+674
=-98
b) -25-21+25-72+49*25
=-21-72+1225
=1132
c) \(\frac{1}{3\cdot4}+\frac{1}{4\cdot5}+\frac{1}{5\cdot6}+\frac{1}{6\cdot7}+\frac{1}{7\cdot8}+\frac{1}{8\cdot9}+\frac{1}{9\cdot10}\)
\(=\frac{1}{3}-\frac{1}{4}+\frac{1}{4}-\frac{1}{5}+\frac{1}{5}-\frac{1}{6}+\frac{1}{6}-\frac{1}{7}+\frac{1}{7}-\frac{1}{8}+\frac{1}{8}-\frac{1}{9}+\frac{1}{9}-\frac{1}{10}\)
\(=\frac{1}{3}-\frac{1}{10}=\frac{7}{30}\)
Bài 2)
a) \(A=\left(-a+b-c\right)-\left(-a-b-c\right)\)
\(=-a+b-c+a+b+c=2b\)
b) \(B=\left(2a+b\right)-3b+\left(a-3c\right)-\left(3a+2c\right)\)
\(=2a+b-3b+a-3c-3a-2c=-2b-5c\)
1. Tính nhanh
a) 8154 - (674 + 8154) + (-98+674)
= 8154 - 674 - 8154 - 98 + 674
= (8154 - 8154) + (674 - 674) - 98
= 0 + 0 - 98
= -98
b) -25 - 21 + 25 - 72 + 49 . 25
= [(-25) + 25] - 21 - 72 + 49 . 25
= 0 - 21 - 72 + 49 . 25
= (-21 - 72) + (49 . 25)
= -93 + 1225
= 1132
c) \(\frac{1}{3.4}\) + \(\frac{1}{4.5}\) + \(\frac{1}{5.6}\) + \(\frac{1}{6.7}\) + \(\frac{1}{7.8}\) + \(\frac{1}{8.9}\) + \(\frac{1}{9.10}\)
= \(\frac{1}{3}-\frac{1}{4}\) + \(\frac{1}{4}-\frac{1}{5}\) + \(\frac{1}{5}-\frac{1}{6}\) + \(\frac{1}{6}-\frac{1}{7}\) + \(\frac{1}{7}-\frac{1}{8}\) + \(\frac{1}{8}-\frac{1}{9}\)+ \(\frac{1}{9}-\frac{1}{10}\)
= \(\frac{1}{3}-\frac{1}{10}\)
= \(\frac{7}{30}\)
2. Bỏ dấu ngoặc, thu gọn biểu thức
a) A = (-a + b - c) - (-a - b - c)
A = (-a) + b - c + a + b + c
A = (-a + a) + (b + b) + (c - c)
A = 0 + 2b + 0
A = 2b
b) B = (2a + b - 3b) + (a - 3c) - (3a + 2c)
B = 2a + b - 3b + a - 3c - 3a - 2c
B = (2a + a - 3a) + (b - 3b) + (-3c - 2c)
B = a(2 + 1 - 3) + b(1 - 3) + c(-3 - 2)
B = a0 + b . (-2) + c . (-5)
B = 0 + b . (-2) + c . (-5)
B = b . (-2) + c . (-5)
a) \(A=\frac{1}{3^2}+\frac{1}{4^2}+...+\frac{1}{100^2}\)
\(\Rightarrow A< \frac{1}{2\cdot3}+\frac{1}{3\cdot4}+...+\frac{1}{99\cdot100}\)
\(\Rightarrow A< \frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+...+\frac{1}{99}-\frac{1}{100}\)
\(\Rightarrow A< \frac{1}{2}-\frac{1}{100}< \frac{1}{2}\)
b) b = a - c => b + c = a
\(\left\{{}\begin{matrix}\frac{a}{b}\cdot\frac{a}{c}=\frac{a^2}{bc}\\\frac{a}{b}+\frac{a}{c}=\frac{ac+ab}{bc}=\frac{a\left(b+c\right)}{bc}=\frac{a^2}{bc}\end{matrix}\right.\)
\(\Rightarrow\frac{a}{b}\cdot\frac{a}{c}=\frac{a}{b}+\frac{a}{c}\)
Bước 2 bạn sai rồi. Vd: \(\frac{1}{3x3}\) đâu bằng hay nhỏ hơn \(\frac{1}{2x3}\)
Ta có : \(\frac{bz-cy}{a}=\frac{cx-az}{b}=\frac{ay-bx}{c}\Leftrightarrow\frac{baz-cay}{a^2}=\frac{cbx-abz}{b^2}=\frac{acy-bcx}{c^2}=\frac{baz-cay+cbx-abz+acy-bcx}{a^2+b^2+c^2}=0\)
\(\Rightarrow bz=cy\Leftrightarrow\frac{y}{b}=\frac{z}{c}\)
\(\Rightarrow cx=az\Leftrightarrow\frac{x}{a}=\frac{z}{c}\)
\(\Rightarrow ay=bx\Leftrightarrow\frac{x}{a}=\frac{y}{b}\)
\(\Rightarrow\frac{x}{a}=\frac{y}{b}=\frac{z}{c}\)
\(A=\frac{a}{b+c}+\frac{b}{c+a}+\frac{c}{a+b}\)
\(=\frac{a}{b+c}+1+\frac{b}{c+a}+1+\frac{c}{a+b}+1-3\)
\(=\frac{a+b+c}{b+c}+\frac{a+b+c}{c+a}+\frac{a+b+c}{a+b}-3\)
\(=\left(a+b+c\right)\left(\frac{1}{b+c}+\frac{1}{c+a}+\frac{1}{a+b}\right)-3\)
\(=7.\frac{7}{10}-3=\frac{49}{10}-3=\frac{19}{10}\)
Ta có:\(1\frac{8}{11}=\frac{19}{11}< \frac{19}{10}\left(đpcm\right)\)
V...
Ta có:
a+b-c/c = b+c-a/a = c+a-b/b
=>a+b-c/c + 2 = b+c-a/a +2 = c+a-b/b +2
=>a+b-c/c + 2c/c =b+c-a/a +2a/a = c+a-b/b +2/b
=>a+b+c/c = a+b+c/a =a+b+c/b
* Nếu a+b+c=0 thì a= 0-b-c= -(b+c)
b= 0-a-c= -(a+c)
c= 0-b-a= -(b+a)
Thay a= -(b+c) ; b=-(a+c);c=-(b+a) vào B ta được
B=(1+b/a)(1+a/c)(1+c/b)=(a/a + b/a )(c/c +a/c)(b/b+c/b)=(a+b)/a * (a+c)/c * (c+b)/b
=(-c)/a * (-b)/c * (-a)/b =-1
* Nếu a+b+c\(\ne\)0 thì a=b=c
Khi đó
B=(1+b/a)(1+a/c)(1+c/b)=(1+1)(1+1)(1+1)=2*2*2=8
Vậy B=-1 hoặc B=8
nhớ k nha bạn
Bài 3:
Dễ thấy 20162019 \(⋮\) 4; 82018 \(⋮\) 4. Đặt 20162019 = 4k; 82018 = 4h \(\left(k,h\in N\right)\).
Ta có: \(2A=7^{4k}-3^{4h}=2401^k-81^h=...1-\left(...1\right)=...0\)
Từ đó 2A chia hết cho 5.
Mà A là số tự nhiên và (2; 5) = 1 nên A chia hết cho 5.
Đề không sai mà bạn. Đề thi chuyển lớp ít khi sai nhiều như thế lắm.
\(=\frac{1}{a^2}+\frac{2}{ab}+\frac{1}{b^2}+\frac{2}{bc}+\frac{1}{c^2}+\frac{2}{ac}\)
\(=\frac{1}{a^2}+\frac{1}{b^2}+\frac{1}{c^2}+\frac{2a+2b+2c}{abc}=\frac{1}{a^2}+\frac{1}{b^2}+\frac{1}{c^2}\)
\(A=\frac{1}{a^2}+\frac{2}{ab}+\frac{1}{b^2}+\frac{2}{bc}+\frac{1}{c^2}+\frac{2}{ac}=\left(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\right)^2\)
Linh không biết a + b + c = 0 để làm gì?