Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Lời giải:
Những bài này sử dụng những hằng đẳng thức đáng nhớ.
Vì $x=-2$ nên $x+2=0$. Ta có:
\(A=(2x-3)^2-(x-3)^3+(4x+1)[(4x)^2-4x.1+1^2]\)
\(=(2x-3)^2-(x-3)^3+(4x)^3+1^3\)
\(=[2(x+2)-7]^2-(x+2-5)^3+8x^3+1\)
\(=(-7)^2-(-5)^3+8.(-2)^3+1=111\)
--------------------
\(B=(3x-y)^3-[x^3+(2y)^3]+(x+3)^2\)
\(=(3.1-2)^3-(1^3+8.2^3)+(1+3)^2=-48\)
----------------
Vì $x=\frac{1}{2}; y=\frac{-1}{2}\Rightarrow x+y=0$
\(C=(x-5y)^2+(2x-3y)^3-(x-y)^3-[(2x)^3+(3y)^3]\)
\(=(x+y-6y)^2+[2(x+y)-5y]^3-(x+y-2y)^3-[8(x^3+y^3)+19y^3]\)
\(=(-6y)^2+(-5y)^3-(-2y)^3-19y^3\)
\(=36y^2-136y^3=36.(\frac{-1}{2})^2-136(\frac{-1}{2})^3=26\)
Bài 1: Rút gọn biểu thức
a) Ta có: (2x-5y)(3x-4y)-(x-y)(6x-21y)
\(=6x^2-8xy-15xy+20y^2-\left(6x^2-21xy-6xy+21y^2\right)\)
\(=6x^2-23xy+20y^2-6x^2+27xy-21y^2\)
\(=4xy-y^2\)
b) Ta có: \(\left(x-y\right)^2-\left(x+y\right)^2\)
\(=\left[\left(x-y\right)-\left(x+y\right)\right]\cdot\left[\left(x-y\right)+\left(x+y\right)\right]\)
\(=\left(x-y-x-y\right)\left(x-y+x+y\right)\)
\(=-2y\cdot2x=-4xy\)
c) Ta có: \(\left(x-1\right)\left(x^2+3x+1\right)-x\left(x^2-2\right)\)
\(=x^3+3x^2+x-x^2-3x-1-x^3+2x\)
\(=2x^2-1\)
a)\(A=\left(2+1\right)\left(2^2+1\right)...\left(2^{256}+1\right)+1.\)
\(< =>A=\left(2-1\right)\left(2+1\right)\left(2^2+1\right)...\left(2^{256}+1\right)+1\)
\(A=\left(2^2-1\right)\left(2^2+1\right)\left(2^4+1\right)....\left(2^{256}+1\right)+1\)
.....
\(=>A=\left(2^{256}-1\right)\left(2^{256}+1\right)+1\)\(=2^{512}-1+1=2^{512}\)
b) sai đề !
đề câu b phải là ( 5x - 3y +4z)(5x-3y-4z)=(3x-5y)^2 mới đúng
Bài 1: Thực hiện phép tính
a) 3x(2x2 - 5x + 9) = \(6x^3-15x^2+27x\)
b) 5x(x2-xy+1) = \(5x^3-5xy+5x\)
c) -2/3x2y(3xy-x2+y) = \(-2x^3y^2+\dfrac{2}{3}x^4y-\dfrac{2}{3}x^2y^2\)
2) Thực hiện phép tính
a) (5x-2y) (x2-xy+1) = \(5x^3+5x-7y-2x^3y+2xy^2\)
b) (x+3y)(x2-2xy+y) = \(x^3-x^2y+xy+6xy^2+y^2\)
c) (3x-5y) (4x+ 7y) = \(12x^2-xy-35y^2\)
Bài 3: Rút gọn các biểu thức sau(bằng cách khai triển hằng đẳng thức):
a) (x+y)2+(x-y)2
= \(x^2+2xy+y^2+x^2-2xy+y^2\)
= \(\left(x^2+x^2\right)+\left(2xy-2xy\right)+\left(y^2+y^2\right)\)
= \(2x^2+2y^2=2\left(x^2+y^2\right)\)
b) (x+2)(x-2)-(x-3)(x+1)
= \(x^2-4\) - \(\left(x^2-2x-3\right)\)= \(x^2-4-x^2+2x+3\)
= \(\left(x^2-x^2\right)+2x+\left(-4+3\right)\)=\(2x-1\)
c) (x-2)(x+2)-(x-2)2
=>\(x^2-4-\left(x^2-2.x.2+2^2\right)=x^2-4-x^2-4x+4=\left(x^2-x^2\right)+\left(-4+4\right)-4x=-4x\)
d) (2x+y)(4x2-2xy+y2)-(2x-y)(4x2+2xy+y2)
= \(8x^3+y^3-\left(8x^3-y^3\right)\)
= \(8x^3+y^3-8x^3+y^3\)
= \(\left(8x^3-8x^3\right)+\left(y^3+y^3\right)\)= \(2y^3\)