Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(a,2\cdot3^3-3\cdot2^2+7^2-5^2\)
\(=2\cdot27-3\cdot4+49-25\)
\(=54-12+49-25\)
\(=42+24\)
\(=66\)
\(a)\frac{2}{3}x-\frac{1}{2}=\frac{5}{12}\)
\(\Rightarrow\frac{2}{3}x=\frac{5}{12}+\frac{1}{2}=\frac{11}{12}\)
\(\Rightarrow x=\frac{11}{12}:\frac{2}{3}=\frac{11}{8}\)
\(b)\left(2\frac{4}{5}x-50\right):\frac{2}{3}=51\)
\(\Rightarrow\frac{14}{5}x-50=51.\frac{2}{3}=34\)
\(\Rightarrow\frac{14}{5}x=34+50=84\)
\(\Rightarrow x=84:\frac{14}{5}=30\)
a) 2/3.x - 1/2 = 5/12
2/3.x = 5/12 + 1/2
2/3.x = 11/12
x = 11/12 : 2/3
x = 11/8
b) \(\left(2\frac{4}{5}.x-50\right):\frac{2}{3}=51\)
\(\frac{14}{5}.x-50=51.\frac{2}{3}\)
\(\frac{14}{5}.x-50=34\)
\(\frac{14}{5}.x=34+50\)
\(\frac{14}{5}.x=84\)
\(x=84:\frac{14}{5}\)
\(x=30\)
A = \(\frac{1}{3}-\frac{3}{4}-\frac{-3}{5}+\frac{1}{73}-\frac{1}{36}+\frac{1}{15}+\frac{-2}{9}\)
A = \(\left(\frac{1}{3}-\frac{2}{9}\right)-\left(\frac{3}{4}+\frac{1}{36}\right)+\left(\frac{3}{5}+\frac{1}{15}\right)+\frac{1}{73}\)
A = \(\left(\frac{3-2}{9}\right)-\left(\frac{27+1}{36}\right)+\left(\frac{9+1}{15}\right)+\frac{1}{73}\)
A = \(\frac{1}{9}-\frac{7}{9}+\frac{6}{9}+\frac{1}{73}\)
A = \(0+\frac{1}{73}=\frac{1}{73}\)
Làm
B = 1/3 - 3/4 - (-3)/5 + 1/73 - 1/36 + 1/15 + -2/9
B = 1/3 -3/4 + 3/5 +1/73 - 1/36 + 1/15 -2/9
B = [ 1/3 + 3/5 + 1/15 ] + [ -3/4 - 1/36 -2/9] + 1/73
B = [ 5/15 + 9/15 + 1/15 ] + [ -27/36 - 8/36 - 1/36 ] + 1/73
B = 1 + (-1) + 1/73
B = 1/73
HỌC TỐT Ạ
a) \(3^x=81\)
\(3^x=3^4\)
\(\Rightarrow x=4\)
b) \(2^x.16=128\)
\(2^x=128:16\)
\(2^x=8\)
\(2^x=2^3\)
\(\Rightarrow x=3\)
c) \(3^x:9=27\)
\(3^x=27.9\)
\(3^x=243\)
\(3^x=3^5\)
\(\Rightarrow x=5\)
d) \(x^4=x\)
\(\Rightarrow x=0\)hoac \(\orbr{\begin{cases}x=1\\x=-1\end{cases}}\)
e) \(\left(2x+1\right)^3=27\)
\(\left(2x+1\right)^3=3^3\)
\(\Rightarrow2x+1=3\)
\(\Rightarrow2x=4\)
\(\Rightarrow x=2\)
f) \(\left(x-2\right)^2=\left(x-2\right)^4\)
\(\left(x-2\right)^2-\left(x-2\right)^4=0\)
\(\left(x-2\right)^2-\left(x-2\right)^2.\left(x-2\right)^2=0\)
\(\left(x-2\right)^2\left[1-\left(x-2\right)^2\right]=0\)
\(\left(x-2\right)^2\left(1-x+2\right)\left(1+x-2\right)=0\)
\(\Rightarrow\left(x-2\right)^2=0\)hoac \(\orbr{\begin{cases}3-x=0\\x-1=0\end{cases}}\)
\(\Rightarrow x-2=0\)hoac \(\orbr{\begin{cases}x=3\\x=1\end{cases}}\)
\(\Rightarrow x=2\)hoac \(\orbr{\begin{cases}x=3\\x=1\end{cases}}\)
a) \(3^x=81\Leftrightarrow3^x=3^4\Rightarrow x=4\)
b)\(2^x\times16=128\Leftrightarrow2^x=8\Leftrightarrow2^x=2^3\Rightarrow x=3\)
c) \(3^x\div9=27\Leftrightarrow3^x\div3^2=3^3\Rightarrow x=5\)
d) \(x^4=x\Leftrightarrow x=1\)
e) \(\left(2x+1\right)^3=27\Leftrightarrow\left(2x+1\right)^3=3^3\Rightarrow2x+1=3 \)
\(\Rightarrow2x=3+1\Leftrightarrow2x=4\Rightarrow x=2\)
F)
Usako Kinomoto
29 + 29 = 29 x 2 = 29+1 = 210
Ta có:
\(2^9+2^9=2.2^9\)
\(3^4+3^4+3^4=3.3^4\)
\(A=1+2+2^2+2^3+.....+2^{2017}\)
\(\Rightarrow2A-A=\left(2+2^3+2^4+....+2^{2018}\right)-\left(1+2+2^2+2^3+....+2^{2017}\right)\)
\(\Rightarrow A=2^{2018}-1\)
\(B=1+3+3^2+....+3^{301}\)
\(\Rightarrow3B-B=\left(3+3^3+3^4+.....+3^{302}\right)-\left(1+3+3^2+....+3^{301}\right)\)
\(\Rightarrow B\left(3-1\right)=3^{302}-1\Leftrightarrow B=\frac{3^{302}-1}{3-1}\)