Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Giải:
\(A=\left(2+1\right)\left(2^2+1\right)\left(2^4+1\right)\left(2^8+1\right)\left(2^{16}+1\right)\left(2^{32}+1\right)\)
\(\Leftrightarrow A=\left(2-1\right)\left(2+1\right)\left(2^2+1\right)\left(2^4+1\right)\left(2^8+1\right)\left(2^{16}+1\right)\left(2^{32}+1\right)\)
\(\Leftrightarrow A=\left(2^2-1\right)\left(2^2+1\right)\left(2^4+1\right)\left(2^8+1\right)\left(2^{16}+1\right)\left(2^{32}+1\right)\)
\(\Leftrightarrow A=\left(2^4-1\right)\left(2^4+1\right)\left(2^8+1\right)\left(2^{16}+1\right)\left(2^{32}+1\right)\)
\(\Leftrightarrow A=\left(2^8-1\right)\left(2^8+1\right)\left(2^{16}+1\right)\left(2^{32}+1\right)\)
\(\Leftrightarrow A=\left(2^{16}-1\right)\left(2^{16}+1\right)\left(2^{32}+1\right)\)
\(\Leftrightarrow A=\left(2^{32}-1\right)\left(2^{32}+1\right)\)
\(\Leftrightarrow A=2^{64}-1\)
Vậy ...
\(B=\left(2^2+1\right)\left(2^4+1\right)\left(2^8+1\right)\left(2^{16}+1\right)\)
\(=\frac{\left(2^2-1\right)\left(2^2+1\right)\left(2^4+1\right)\left(2^8+1\right)\left(2^{16}+1\right)}{3}\)
\(=\frac{\left(2^4-1\right)\left(2^4+1\right)\left(2^8+1\right)\left(2^{16}+1\right)}{3}\)
\(=\frac{\left(2^8-1\right)\left(2^8+1\right)\left(2^{16}+1\right)}{3}\)
\(=\frac{\left(2^{16}-1\right)\left(2^{16}+1\right)}{3}\)
\(=\frac{2^{32}-1}{3}\)
\(A=\left(2^2+1\right)\left(2^4+1\right)\left(2^8+1\right)\left(2^{16}+1\right)\)
=> \(3A=\left(2^2-1\right)\left(2^2+1\right)\left(2^4+1\right)\left(2^8+1\right)\left(2^{16}+1\right)\)
\(=\left(2^4-1\right)\left(2^4+1\right)\left(2^8+1\right)\left(2^{16}+1\right)\)
\(=\left(2^8-1\right)\left(2^8+1\right)\left(2^{16}+1\right)\)
\(=\left(2^{16}-1\right)\left(2^{16}+1\right)=2^{32}-1\)
=> \(A=\frac{2^{32}-1}{3}\)
\( A= 3 ( 4^2+1).(4^4+1).(4^8+1) - ( 4^{16}+1) - \frac{4^{32}}{5}\)
\(A=\dfrac{1}{2}+\dfrac{1}{4}+\dfrac{1}{8}+\dfrac{1}{16}+\dfrac{1}{32}=\dfrac{1}{2}+\dfrac{1}{2^2}+\dfrac{1}{2^3}+\dfrac{1}{2^4}+\dfrac{1}{2^5}\)
\(2A=1+\dfrac{1}{2}+\dfrac{1}{2^2}+\dfrac{1}{2^3}+\dfrac{1}{2^4}\)
\(2A-A=\left(1+\dfrac{1}{2}+\dfrac{1}{2^2}+\dfrac{1}{2^3}+\dfrac{1}{2^4}\right)-\left(\dfrac{1}{2}+\dfrac{1}{2^2}+\dfrac{1}{2^3}+\dfrac{1}{2^4}+\dfrac{1}{2^5}\right)\)
\(A=1-\dfrac{1}{2^5}=\dfrac{31}{32}\)
+\(\left(a-b\right)\left(a+b\right)=a\left(a+b\right)-b\left(a+b\right)\)
\(=a^2+ab-ab-b^2=a^2-b^2\)
Do đó :\(A=\left(2-1\right)\left(2+1\right)\left(2^2+1\right)\left(2^4+1\right)+\left(2^8+1\right)\left(2^{16}+1\right)\left(2^{32}+1\right)\)\(A=\left(2^2-1\right)\left(2^2+1\right)\left(2^4+1\right)\left(2^8+1\right)\left(2^{16}+1\right)\left(2^{32}+1\right)\)
\(A=\left(2^4-1\right)\left(2^4+1\right)\left(2^8+1\right)\left(2^{16}+1\right)\left(2^{32}+1\right)\)
\(A=\left(2^8-1\right)\left(2^8+1\right)\left(2^{16}+1\right)\left(2^{32}+1\right)\)
\(A=\left(2^{16}-1\right)\left(2^{16}+1\right)\left(2^{32}+1\right)\)
\(A=\left(2^{32}-1\right)\left(2^{32}+1\right)=2^{64}-1\)