Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) Ta có: \(\sqrt{11-2\sqrt{10}}\)
\(=\sqrt{10-2\cdot\sqrt{10}\cdot1+1}\)
\(=\sqrt{\left(\sqrt{10}-1\right)^2}\)
\(=\left|\sqrt{10}-1\right|=\sqrt{10}-1\)
b) Ta có: \(\sqrt{9-2\sqrt{14}}\)
\(=\sqrt{7-2\cdot\sqrt{7}\cdot\sqrt{2}+2}\)
\(=\sqrt{\left(\sqrt{7}-\sqrt{2}\right)^2}\)
\(=\left|\sqrt{7}-\sqrt{2}\right|\)
\(=\sqrt{7}-\sqrt{2}\)
c) Ta có: \(\sqrt{4+2\sqrt{3}}+\sqrt{4-2\sqrt{3}}\)
\(=\sqrt{3+2\cdot\sqrt{3}\cdot1+1}+\sqrt{3-2\cdot\sqrt{3}\cdot1+1}\)
\(=\sqrt{\left(\sqrt{3}+1\right)^2}+\sqrt{\left(\sqrt{3}-1\right)^2}\)
\(=\left|\sqrt{3}+1\right|+\left|\sqrt{3}-1\right|\)
\(=\sqrt{3}+1+\sqrt{3}-1\)
\(=2\sqrt{3}\)
d) Ta có: \(\sqrt{9-4\sqrt{5}}-\sqrt{9+4\sqrt{5}}\)
\(=\sqrt{5-2\cdot\sqrt{5}\cdot2+4}-\sqrt{5+2\cdot\sqrt{5}\cdot2+4}\)
\(=\sqrt{\left(\sqrt{5}-2\right)^2}-\sqrt{\left(\sqrt{5}+2\right)^2}\)
\(=\left|\sqrt{5}-2\right|-\left|\sqrt{5}+2\right|\)
\(=\sqrt{5}-2-\left(\sqrt{5}+2\right)\)
\(=\sqrt{5}-2-\sqrt{5}-2\)
\(=-4\)
e) Ta có: \(\sqrt{4-\sqrt{7}}-\sqrt{4+\sqrt{7}}\)
\(=\frac{\sqrt{2}\cdot\left(\sqrt{4-\sqrt{7}}-\sqrt{4+\sqrt{7}}\right)}{\sqrt{2}}\)
\(=\frac{\sqrt{2}\cdot\left(\sqrt{4-\sqrt{7}}\right)-\sqrt{2}\cdot\left(\sqrt{4+\sqrt{7}}\right)}{\sqrt{2}}\)
\(=\frac{\sqrt{8-2\sqrt{7}}-\sqrt{8+2\sqrt{7}}}{\sqrt{2}}\)
\(=\frac{\sqrt{7-2\cdot\sqrt{7}\cdot1+1}-\sqrt{7+2\cdot\sqrt{7}\cdot1+1}}{\sqrt{2}}\)
\(=\frac{\sqrt{\left(\sqrt{7}-1\right)^2}-\sqrt{\left(\sqrt{7}+1\right)^2}}{\sqrt{2}}\)
\(=\frac{\left|\sqrt{7}-1\right|-\left|\sqrt{7}+1\right|}{\sqrt{2}}\)
\(=\frac{\sqrt{7}-1-\left(\sqrt{7}+1\right)}{\sqrt{2}}\)
\(=\frac{\sqrt{7}-1-\sqrt{7}-1}{\sqrt{2}}\)
\(=\frac{-2}{\sqrt{2}}=-\sqrt{2}\)
g) Ta có: \(\sqrt{3}+\sqrt{11+6\sqrt{2}}+\sqrt{5+2\sqrt{6}}\)
\(=\sqrt{3}+\sqrt{9+2\cdot3\cdot\sqrt{2}+2}+\sqrt{2+2\cdot\sqrt{2}\cdot\sqrt{3}+3}\)
\(=\sqrt{3}+\sqrt{\left(3+\sqrt{2}\right)^2}+\sqrt{\left(\sqrt{2}+\sqrt{3}\right)^2}\)
\(=\sqrt{3}+\left|3+\sqrt{2}\right|+\left|\sqrt{2}+\sqrt{3}\right|\)
\(=\sqrt{3}+3+\sqrt{2}+\sqrt{2}+\sqrt{3}\)
\(=3+2\sqrt{3}+2\sqrt{2}\)
h) Ta có: \(\sqrt{5\sqrt{3}+5\sqrt{48-10\sqrt{7+4\sqrt{3}}}}\)
\(=\sqrt{5\sqrt{3}+5\sqrt{48-10\cdot\sqrt{3+2\cdot\sqrt{3}\cdot2+4}}}\)
\(=\sqrt{5\sqrt{3}+5\sqrt{48-10\cdot\sqrt{\left(\sqrt{3}+2\right)^2}}}\)
\(=\sqrt{5\sqrt{3}+5\cdot\sqrt{48-10\cdot\left(\sqrt{3}+2\right)}}\)
\(=\sqrt{5\sqrt{3}+5\cdot\sqrt{48-10\sqrt{3}-20}}\)
\(=\sqrt{5\sqrt{3}+5\cdot\sqrt{28-10\sqrt{3}}}\)
\(=\sqrt{5\sqrt{3}+5\cdot\sqrt{25-2\cdot5\cdot\sqrt{3}+3}}\)
\(=\sqrt{5\sqrt{3}+5\cdot\sqrt{\left(5-\sqrt{3}\right)^2}}\)
\(=\sqrt{5\sqrt{3}+5\cdot\left(5-\sqrt{3}\right)}\)
\(=\sqrt{5\sqrt{3}+25-5\sqrt{3}}\)
\(=\sqrt{25}=5\)
k) Ta có: \(\sqrt{94-42\sqrt{5}}-\sqrt{94+42\sqrt{5}}\)
\(=\sqrt{49-2\cdot7\cdot\sqrt{45}+45}-\sqrt{49+2\cdot7\cdot\sqrt{45}+45}\)
\(=\sqrt{\left(7-\sqrt{45}\right)^2}-\sqrt{\left(7+\sqrt{45}\right)^2}\)
\(=\left|7-\sqrt{45}\right|-\left|7+\sqrt{45}\right|\)
\(=7-\sqrt{45}-\left(7+\sqrt{45}\right)\)
\(=7-\sqrt{45}-7-\sqrt{45}\)
\(=-2\sqrt{45}=-6\sqrt{5}\)
i) Đặt \(A=\sqrt{4+\sqrt{10+2\sqrt{5}}}+\sqrt{4-\sqrt{10+2\sqrt{5}}}\)
\(\Leftrightarrow A^2=\left(\sqrt{4+\sqrt{10+2\sqrt{5}}}+\sqrt{4-\sqrt{10+2\sqrt{5}}}\right)^2\)
\(=4+\sqrt{10+2\sqrt{5}}+4-\sqrt{10+2\sqrt{5}}+2\cdot\sqrt{\left(4+\sqrt{10+2\sqrt{5}}\right)\cdot\left(4-\sqrt{10+2\sqrt{5}}\right)}\)
\(=8+2\cdot\sqrt{16-\left(10+2\sqrt{5}\right)}\)
\(=8+2\cdot\sqrt{6-2\sqrt{5}}\)
\(=8+2\cdot\sqrt{\left(\sqrt{5}-1\right)^2}\)
\(=8+2\cdot\left(\sqrt{5}-1\right)\)
\(=8+2\sqrt{5}-2\)
\(=6+2\sqrt{5}\)
\(=\left(\sqrt{5}+1\right)^2\)
\(\Leftrightarrow A=\sqrt{5}+1\)
\(A=\sqrt{7+4\sqrt{3}}-\sqrt{7-4\sqrt{3}}\)
\(=\sqrt{\left(2+\sqrt{3}\right)^2}-\sqrt{\left(2-\sqrt{3}\right)^2}\)
\(=|2+\sqrt{3}|-|2-\sqrt{3}|\)
\(=2+\sqrt{3}-2+\sqrt{3}\)
\(=2\sqrt{3}\)
\(B=\sqrt{11+6\sqrt{2}}-\sqrt{11-6\sqrt{2}}\)
\(=\sqrt{\left(3+\sqrt{2}\right)^2}-\sqrt{\left(3-\sqrt{2}\right)^2}\)
\(=|3+\sqrt{2}|-|3-\sqrt{2}|\)
\(=3+\sqrt{2}-3+\sqrt{2}\)
\(=2\sqrt{2}\)
\(C=\sqrt{17+12\sqrt{2}}+\sqrt{17-12\sqrt{2}}\)
\(=\sqrt{\left(3+2\sqrt{2}\right)^2}+\sqrt{\left(3-2\sqrt{2}\right)^2}\)
\(=|3+2\sqrt{2}|+|3-2\sqrt{2}|\)
\(=3+2\sqrt{2}+3-2\sqrt{2}\)
\(=6\)
\(D=\sqrt{9+4\sqrt{5}}-\sqrt{9-4\sqrt{5}}\)
\(=\sqrt{\left(2+\sqrt{5}\right)^2}-\sqrt{\left(2-\sqrt{5}\right)^2}\)
\(=|2+\sqrt{5}|-|2-\sqrt{5}|\)
\(=2+\sqrt{5}-\sqrt{5}+2\)
\(=4\)
\(E=\sqrt{6+2\sqrt{5}}-\sqrt{6-2\sqrt{5}}\)
\(=\sqrt{\left(1+\sqrt{5}\right)^2}-\sqrt{\left(1-\sqrt{5}\right)^2}\)
\(=|1+\sqrt{5}|-|1-\sqrt{5}|\)
\(=1+\sqrt{5}-\sqrt{5}+1\)
\(=2\)
\(A=\sqrt{7+4\sqrt{3}}-\sqrt{7-4\sqrt{3}}\)
\(A=\sqrt{3}+2+2-\sqrt{3}\)
A = 2 + 2
A = 4
\(B=\sqrt{11+6\sqrt{2}}-\sqrt{11-6\sqrt{2}}\)
\(B=\sqrt{2}+3+3-\sqrt{2}\)
B = 3 + 3
B = 6
\(C=\sqrt{17+12\sqrt{2}}+\sqrt{17-12\sqrt{2}}\)
\(C=3+2\sqrt{2}+3-2\sqrt{2}\)
C = 3 + 3
C = 6
\(D=\sqrt{9+4\sqrt{5}}-\sqrt{9-4\sqrt{5}}\)
\(D=\sqrt{5}+2-\sqrt{5}+2\)
D = 2 + 2
D = 4
\(E=\sqrt{6+2\sqrt{5}}-\sqrt{6-2\sqrt{5}}\)
\(E=\sqrt{5}+1-\sqrt{5}+1\)
E = 1 + 1
E = 2
a. \(\sqrt{13+6\sqrt{4+\sqrt{9-4\sqrt{2}}}}=\sqrt{13+6\sqrt{4+\sqrt{\left(\sqrt{8}-1\right)^2}}}=\sqrt{13+6\sqrt{4+\sqrt{8}-1}}=\sqrt{13+6\sqrt{3+\sqrt{8}}}=\sqrt{13+6\sqrt{\left(\sqrt{2}+1\right)^2}}=\sqrt{13+6\left(\sqrt{2}+1\right)}=\sqrt{13+6\sqrt{2}+6}=\sqrt{19+6\sqrt{2}}=\sqrt{\left(3\sqrt{2}+1\right)^2}=1+3\sqrt{2}\)
b. \(\left(\sqrt{3}-1\right)\sqrt{2\sqrt{19+8\sqrt{3}}-4}=\left(\sqrt{3}-1\right)\sqrt{2\sqrt{\left(4+\sqrt{3}\right)^2}-4}=\left(\sqrt{3}-1\right)\sqrt{8+2\sqrt{3}-4}=\left(\sqrt{3}-1\right)\sqrt{\left(\sqrt{3}+1\right)^2}=\left(\sqrt{3}-1\right)\left(\sqrt{3}+1\right)=3-1=2\)
c. \(\sqrt{5+2\sqrt{6}}+\sqrt{14-4\sqrt{6}}=\sqrt{\left(\sqrt{3}+\sqrt{2}\right)^2}+\sqrt{\left(2\sqrt{3}-\sqrt{2}\right)^2}=\sqrt{3}+\sqrt{2}+2\sqrt{3}-\sqrt{2}=3\sqrt{3}\)
d. \(\sqrt{5-2\sqrt{6}}+\sqrt{11-4\sqrt{6}}=\sqrt{\left(\sqrt{3}-\sqrt{2}\right)^2}+\sqrt{\left(2\sqrt{2}-\sqrt{3}\right)^2}=\sqrt{3}-\sqrt{2}+2\sqrt{2}-\sqrt{3}=\sqrt{2}\)
https://hoc24.vn/hoi-dap/question/407636.html
\(M=\sqrt{4+\sqrt{5\sqrt{3}+5\sqrt{48-10\sqrt{7+4\sqrt{3}}}}}\)
\(=\sqrt{4+\sqrt{5\sqrt{3}+5\sqrt{48-10\sqrt{\left(2+\sqrt{3}\right)^2}}}}\)
\(=\sqrt{4+\sqrt{5\sqrt{3}+5\sqrt{48-20-10\sqrt{3}}}}\)
\(=\sqrt{4+\sqrt{5\sqrt{3}+5\sqrt{\left(5-\sqrt{3}\right)^2}}}\)
\(=\sqrt{4+\sqrt{5\sqrt{3}+25-5\sqrt{3}}}\)
\(=\sqrt{4+5}\)
= 9
~ ~ ~ ~ ~
\(M=\sqrt{6+2\sqrt{2}\sqrt{3-\sqrt{\sqrt{2}+\sqrt{12}+\sqrt{18-8\sqrt{2}}}}}\)
\(=\sqrt{6+2\sqrt{2}\sqrt{3-\sqrt{\sqrt{2}+\sqrt{12}+\sqrt{\left(4-\sqrt{2}\right)^2}}}}\)
\(=\sqrt{6+2\sqrt{2}\sqrt{3-\sqrt{\sqrt{2}+2\sqrt{3}+4-\sqrt{2}}}}\)
\(=\sqrt{6+2\sqrt{2}\sqrt{3-\sqrt{\left(\sqrt{3}+1\right)^2}}}\)
\(=\sqrt{6+2\sqrt{2}\sqrt{3-\sqrt{3}-1}}\)
\(=\sqrt{6+2\sqrt{4-2\sqrt{3}}}\)
\(=\sqrt{6+2\sqrt{\left(\sqrt{3}-1\right)^2}}\)
\(=\sqrt{6+2\sqrt{3}-2}\)
\(=\sqrt{\left(\sqrt{3}+1\right)^2}\)
\(=\sqrt{3}+1\)
1) \(\sqrt{36+12\sqrt{5}}=\sqrt{\left(\sqrt{30}+\sqrt{6}\right)^2}=\sqrt{30}+\sqrt{6}\)
2)\(\sqrt{21-6\sqrt{6}}=\sqrt{\left(\sqrt{18}-\sqrt{3}\right)^2}=\sqrt{18}-\sqrt{3}\)
3)\(\sqrt{6-2\sqrt{5}}-\sqrt{9-4\sqrt{5}}=\sqrt{\left(\sqrt{5}-1\right)^2}-\sqrt{\left(\sqrt{9}-1\right)^2}\)
\(=\sqrt{5}-1-\left(\sqrt{9}-1\right)\)
\(=\sqrt{5}-\sqrt{9}\)
4)\(\sqrt{3+2\sqrt{2}}-\sqrt{3-2\sqrt{2}}\)\(=\sqrt{\left(\sqrt{2}+1\right)^2}-\sqrt{\left(\sqrt{2}-1\right)^2}\)
\(=\sqrt{2}+1-\left(\sqrt{2-1}\right)=2\)
5) \(\sqrt{4-2\sqrt{3}}-\sqrt{4+2\sqrt{3}}=\sqrt{\left(\sqrt{3}-1\right)^2}-\sqrt{\left(\sqrt{3}+1\right)^2}\)
\(=\sqrt{3}-1-\left(\sqrt{3}+1\right)=2\sqrt{3}\)
6)\(\sqrt{6+4\sqrt{2}}-\sqrt{11-6\sqrt{2}}=\sqrt{\left(2+\sqrt{2}\right)^2}-\sqrt{\left(3-\sqrt{2}\right)^2}\)
\(=2+\sqrt{2}-\left(3-\sqrt{2}\right)=2\sqrt{2}-1\)
7)\(\sqrt{21-4\sqrt{5}}+\sqrt{21+4\sqrt{5}}=\sqrt{\left(\sqrt{20}-1\right)^2}+\sqrt{\left(\sqrt{20}+1\right)^2}\)
\(=\sqrt{20}-1+\sqrt{20+1}=2\sqrt{20}\)
a) \(\sqrt{3-2\sqrt{2}}+\sqrt{3+2\sqrt{2}}\)
=\(\sqrt{\left(\sqrt{2}-1\right)^2}+\sqrt{\left(\sqrt{2}+1\right)^2}\)
=\(\sqrt{2}-1+\sqrt{2}+1=2\sqrt{2}\)
b) \(\sqrt{9-4\sqrt{5}}+\sqrt{6+2\sqrt{5}}\)
=\(\sqrt{\left(2-\sqrt{5}\right)^2}+\sqrt{\left(\sqrt{5}+1\right)^2}\)
= \(2-\sqrt{5}+\sqrt{5}+1=3\)
c) \(\sqrt{9-4\sqrt{2}}-\sqrt{11+6\sqrt{2}}\)
=\(\sqrt{\left(2\sqrt{2}+1\right)^2}-\sqrt{\left(3+\sqrt{2}\right)^2}\)
=\(2\sqrt{2}+1-3-\sqrt{2}=\sqrt{2}-2\)
d) \(\sqrt{12+8\sqrt{2}}+\sqrt{6-4\sqrt{2}}\)
=\(\sqrt{\left(2\sqrt{2}+2\right)^2}+\sqrt{\left(2-\sqrt{2}\right)^2}\)
=\(2\sqrt{2}+2+2-\sqrt{2}=\sqrt{2}+4\)
a)
\(\sqrt{3-2\sqrt{2}}+\sqrt{3+2\sqrt{2}}=\sqrt{2-2\sqrt{2}+1}+\sqrt{2+2\sqrt{2}+1}\\ =\sqrt{2}-1+\sqrt{2}+1=2\text{ }\sqrt{2}\)
b)
\(\sqrt{9-4\sqrt{5}}+\sqrt{6+2\sqrt{5}}=\sqrt{2^2-2.2.\sqrt{5}+5}+\sqrt{5+2\sqrt{5}+1}\\ =2-\sqrt{5}+\sqrt{5}+1=3\)
b) \(\sqrt{4+\sqrt{15}}+\sqrt{4-\sqrt{15}}-2\sqrt{3-\sqrt{5}}\)
\(=\dfrac{\sqrt{8+2\sqrt{15}}}{\sqrt{2}}+\dfrac{\sqrt{8-2\sqrt{15}}}{\sqrt{2}}-\sqrt{2}.\sqrt{6-2\sqrt{5}}\)
\(=\dfrac{\sqrt{\left(\sqrt{5}+\sqrt{3}\right)^2}}{\sqrt{2}}+\dfrac{\sqrt{\left(\sqrt{5}-\sqrt{3}\right)^2}}{\sqrt{2}}-\sqrt{2}.\sqrt{\left(\sqrt{5}-1\right)^2}\)
\(=\dfrac{\sqrt{5}+\sqrt{3}}{\sqrt{2}}+\dfrac{\sqrt{5}-\sqrt{3}}{\sqrt{2}}-\sqrt{2}.\left(\sqrt{5}-1\right)\)
\(=\dfrac{\left(\sqrt{5}+\sqrt{3}\right)+\left(\sqrt{5}-\sqrt{3}\right)}{\sqrt{2}}-\sqrt{10}+\sqrt{2}\)
\(=\dfrac{\sqrt{5}+\sqrt{3}+\sqrt{5}-\sqrt{3}}{\sqrt{2}}-\sqrt{10}+\sqrt{2}=\dfrac{2\sqrt{5}}{\sqrt{2}}-\sqrt{10}+\sqrt{2}\)
\(=\sqrt{10}-\sqrt{10}+\sqrt{2}=\sqrt{2}\)
e) \(C=\sqrt{\sqrt{5}-\sqrt{3-\sqrt{29-12\sqrt{5}}}}\) \(C=\sqrt{\sqrt{5}-\sqrt{3-\sqrt{\left(2\sqrt{5}-3\right)^2}}}\)
\(C=\sqrt{\sqrt{5}-\sqrt{3-2\sqrt{5}+3}}\)
\(C=\sqrt{\sqrt{5}-\sqrt{6-2\sqrt{5}}}=\sqrt{\sqrt{5}-\sqrt{\left(\sqrt{5}-1\right)^2}}\)
\(C=\sqrt{\sqrt{5}-\sqrt{5}+1}=\sqrt{1}=1\)
câu a ; f chưa nghỉ ra
a) \(\sqrt{9-4\sqrt{5}}+\sqrt{9+4\sqrt{5}}\)
\(=\sqrt{\left(5-4\sqrt{5}+4\right)}+\sqrt{5+4\sqrt{5}+4}\)
\(=\sqrt{\left(\sqrt{5}-2\right)^2}+\sqrt{\left(\sqrt{5}+2\right)^2}\)
\(=\sqrt{5}-2+\sqrt{5}+2\)
\(=2\sqrt{5}\)