\(2^{17}-2^{16}-2^{15}-...-2^2-2-1\)

">
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

22 tháng 6 2016

đặt đa thức trên là A ta có

2A=\(2^{18}-2^{17}-2^{16-....-2}\) 

\(-\)

A=\(2^{17}-2^{16}-2^{15}-...-1\)

=

A=\(2^{18}-1\)

Gọi dãy số trên là : A

 \(A=2^{17}-2^{16}-2^{15}-......-2^2-2-1\)

\(\Rightarrow2A=2^{18}-2^{16}-2^{15}-.......-2^2-2\)

\(\Rightarrow A=2A-A=2^{18}-1\)

27 tháng 5 2016

\(F=\left(20^2-19^2\right)+\left(18^2-17^2\right)+...+\left(2^2-1\right)\)

\(F=1+2+3+4+...+20\)

\(F=21.10=210\)

27 tháng 5 2016

\(F=\left(20^2+18^2+...+4^2+2^2\right)-\left(19^2+17^2+...+3^2-1\right)\)

\(F=20^2+18^2+....+4^2+2^2-19^2-17^2-....-3^2-1^2\)

\(F=\left(20^2-19^2\right)+\left(18^2-17^2\right)+.....+\left(4^2-3^2\right)+\left(2^2-1^2\right)\)

Áp dụng hằng đẳng thức : \(a^2-b^2=\left(a-b\right)\left(a+b\right)\) ta được:

\(F=\left(20-19\right)\left(20+19\right)+\left(18-17\right)\left(18+17\right)+...+\left(4-3\right)\left(4+3\right)+\left(2-1\right)\left(2+1\right)\)

\(F=1.39+1.35+....+1.7+1.3=39+35+.....+7+3\)

Dãy trên có: (39-3):4+1=10 (số hạng)

=>\(F=\frac{\left(39+3\right).10}{2}=\frac{420}{2}=210\)

a: \(A=\dfrac{4^{15}\cdot7^{15}\cdot3^{17}}{4^{32}\cdot3^{16}}=\dfrac{1}{4^{17}}\cdot3\cdot7^{15}=\dfrac{3\cdot7^{15}}{4^{17}}\)

b: \(B=\dfrac{3^{10}+6^2}{5\cdot3^8+20}=\dfrac{3^{10}+3^2\cdot4}{5\left(3^8+4\right)}=\dfrac{3^2\left(3^8+4\right)}{5\left(3^8+4\right)}=\dfrac{9}{5}\)

15 tháng 9 2019

1

a) \(\frac{2^2.9^2}{6^4.8}\)\(=\frac{2^2+\left(3^2\right)^2}{\left(2.3\right)^4.2^3}\)\(=\frac{3^4}{2^4.3^4.2}=\frac{1}{2^4.2}=\frac{1}{2^5}=\frac{1}{32}\)

b)\(\frac{3^{10}.2^1}{16.4^3.243}=\frac{3^{10}.2^1}{2^4.4^3.3^5}=\frac{3^5}{2^3.4^3}=\frac{3^5}{\left(2.4\right)^3}\)\(=\frac{3^5}{8^3}=\frac{243}{512}\)

15 tháng 9 2019

Bài 1 :                                                                        Bài giải

\(\frac{28^{15}\cdot3^{17}}{84^{16}}=\frac{\left(2^2\cdot7\right)^{15}\cdot3^{17}}{\left(2^2\cdot3\cdot7\right)^{16}}=\frac{2^{30}\cdot7^{15}\cdot3^{17}}{2^{32}\cdot3^{16}\cdot7^{16}}=\frac{3}{2^2\cdot7}=\frac{3}{4\cdot7}=\frac{3}{28}\)

Bài 2 :                                                              Bài giải

\(\frac{3^6\cdot21^{12}}{175^9\cdot7^3}=\frac{3^6\cdot\left(3\cdot7\right)^{12}}{\left(5^2\cdot7\right)^9\cdot7^3}=\frac{3^6\cdot3^{12}\cdot7^{12}}{5^{18}\cdot7^9\cdot7^3}=\frac{3^{18}\cdot7^{12}}{5^{18}\cdot7^{12}}=\frac{3^{18}}{5^{18}}\)

\(\frac{3^{10}\cdot6^7\cdot4}{10^9\cdot5^8}=\frac{3^{10}\cdot\left(2\cdot3\right)^7\cdot2^2}{\left(2\cdot5\right)^9\cdot5^8}=\frac{3^{10}\cdot2^7\cdot3^7\cdot2^2}{2^9\cdot5^9\cdot5^8}=\frac{3^{17}\cdot2^9}{2^9\cdot5^{17}}=\frac{3^{17}}{5^{17}}\)

Ta có : \(3^{17}\cdot5^{18}=3^{17}\cdot5^{17}\cdot5=\left(3\cdot5\right)^{17}\cdot5=15^{17}\cdot5\)

\(3^{18}\cdot5^{17}=3\cdot3^{17}\cdot5^{17}=3\cdot\left(3\cdot5\right)^{17}=3\cdot15^{17}\)

\(\text{ Vì }5\cdot15^{17}>3\cdot15^{17}\text{ }\Rightarrow\text{ }3^{17}\cdot5^{18}>3^{18}\cdot5^{17}\text{ }\Rightarrow\text{ }\frac{3^{18}}{5^{18}}< \frac{3^{17}}{5^{17}}\)

15 tháng 9 2019

cảm ơn nha