Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Gọi thời gian người thứ nhất, người thứ 2 làm công việc đó lần lượt là \(x;y>0\), giờ
Người thứ nhất làm xong ít hơn người thứ 2 là 6 giờ
\(y-x=6\Rightarrow y=x+6\)giờ
Trong 1 giờ đội thứ nhất làm được : \(\dfrac{1}{x}\)công việc
Trong 1 giờ đội thứ 2 làm được : \(\dfrac{1}{y}=\dfrac{1}{x+6}\)công việc
Do 2 người cùng làm 1 công việc thì 4 giờ xong
hay ta có phương trình \(\dfrac{1}{x}+\dfrac{1}{x+6}=\dfrac{1}{4}\Leftrightarrow\dfrac{x+6+x}{x\left(x+6\right)}=\dfrac{1}{4}\)( ĐK : \(x\ne-6;0\))
\(\Rightarrow8x+24=x\left(x+6\right)\Leftrightarrow\left(x-6\right)\left(x+4\right)=0\Leftrightarrow x=6\left(chon\right);x=-4\left(loai\right)\)
\(\Rightarrow y=6+6=12\)
Vậy người thứ nhất làm riêng công việc đó trong 6 giờ
người thứ 2 làm riêng công việc đó trong 12 giờ
Gọi thời gian người thứ người thứ 1 làm một mình xong công việc là: x (ngày);
(x > 5,5)
Gọi thời gian người thứ người thứ 2 làm một mình xong công việc là: y (ngày);
(y > 5,5)
1 ngày người thứ nhất làm là 1 x công việc
1 ngày người thứ hai làm là 1 y công việc
Theo bài ra: người thứ nhất làm trong 7 ngày, người thứ 2 làm trong 5,5 ngày thì xong công việc nên ta có:
7 x + 5 , 5 y = 1 (1)
Vì làm một mình người thứ nhất lâu hơn người thứ hai là 3 ngày nên ta có:
x – y = 3 (2)
Từ (1) và (2) ta có hệ:
7 x + 5 , 5 y = 1 x − y = 3 ⇔ x = y + 3 7 y + 3 + 5 , 5 y = 1 ⇔ x = y + 3 7 y + 5 , 5 y + 16 , 5 = y 2 + 3 y ⇔ x = y + 3 y 2 − 9 , 5 y − 16 , 5 = 0 ⇔ x = y + 3 y = 11 ( t m d k ) y = − 1 , 5 ( k t m d k ) ⇔ y = 11 x = 14
vậy người thứ hai làm xong công việc một mình trong 11 (ngày); người thứ nhất làm xong công việc một mình trong 14 (ngày)
Đáp án:A
Gọi người 1 , 2 làm trong k , t ngày thì xong công việc ( k,t>0 )
Ta có hệ pt \(\int^{\frac{2}{k}+\frac{5}{t}=\frac{1}{2}}_{\frac{3}{k}+\frac{3}{t}=1-\frac{1}{20}}\)
biên luân ban tu lm nhe mk chi ghi hê pt ra thôi \(\hept{\begin{cases}\frac{1}{x}+\frac{1}{y}=\frac{1}{12}\\\frac{1}{x}-\frac{1}{y}=\frac{1}{2}\end{cases}}\) ban tu giai nhe
24 gio thi xong
bai nay lop 5
tk minh nha
happy new year
Nhưng bài này là giải bài toán bằng cách lập hệ phương trình, không phải giải theo cấp 1
Gọi thời gian để người thứ nhất, người thứ hai làm xong công việc lần lượg là x, y (giờ; x, y \(\in\) N*)
Khi đó trong mỗi giờ người thứ nhất làm được \(\dfrac{1}{x}\) công việc, người thứ hai làm được \(\dfrac{1}{y}\) công việc.
Theo bài ra ta có: \(\left\{{}\begin{matrix}\dfrac{16}{x}+\dfrac{16}{y}=1\\\dfrac{3}{x}+\dfrac{6}{y}=\dfrac{1}{4}\end{matrix}\right.\).
Giải ra ta có \(\dfrac{1}{x}=\dfrac{1}{24};\dfrac{1}{y}=\dfrac{1}{48}\Rightarrow x=24;y=48\) (TMĐK)
Vậy....